Screening of GATA-1 Mutation in Patients with Down Syndrome

Thesis

Submitted for partial fulfillment of the requirements of Doctorate Degree of Medical Genetics

By

Nada Hammad Abd El Fattah

Master degree of Medical Genetic, Faculty of Medicine Ain-Shams University, 2013

Under Supervision of

Prof. Mohsen Saleh El-Alfy

Professor of Pediatrics Faculty of Medicine, Ain-Shams University

Prof. Manal Hashim Fayek

Professor of Clinical Pathology Faculty of Medicine, Ain-Shams University

Dr. Eman Ahmed Ragab

Assistant Professor of Pediatrics Faculty of Medicine, Ain-Shams University

Dr. Heba Salah Abd El-Khalek Elabd

Assistant Professor of Medical Genetics Faculty of Medicine, Ain-Shams University

Dr. Tarek Mostafa Kamal

Associate Consultant for Human Genetics Faculty of Medicine, Ain-Shams University

Faculty of Medicine
Ain-Shams University
2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALAH, the Most Kind and Most Merciful.

I was honored to work under the supervision of **Prof.**Mohsen Saleh El-Alfy, Professor of Pediatrics, Faculty of Medicine,
Ain-Shams University, for his vital assistance and unlimited cooperation. She had generously offered me much of her time, precious
advice and variable guidance throughout this work.

I wish to express my deepest thanks and gratitude to **Prof.**Manal Washim Fayek, Professor of Clinical Pathology, Faculty of Medicine, Ain-Shams University, for her close supervision ,generous efforts and constant encouragement .she had scarified a lot of her busy time to teach me and revise over step of this thesis.

I would like to express my sincere thanks to **Dr. Eman Ahmed Ragab**, Assistant Professor of Pediatrics, Faculty of Medicine, Ain-Shams University, who kindly offered me much of his time, experience, valuable help and effort in the immunohistochemical aspect.

I wish to express my deepest thanks and gratitude to **Dr.****Theba Salah Abd & Khalek Clabd, Lecturer of Medical Genetics,

Faculty of Medicine, Ain-Shams University for her close supervision

*,generous efforts and constant encouragement .she had scarified a lot of her busy time to teach me and revise over step of this thesis.

I wish to express my deepest thanks and gratitude to **Dr.**Tarek Mostafa Kamal, Associate Consultant for Human Genetics, Faculty of Medicine, Ain-Shams University for her close supervision generous efforts and constant encouragement she had scarified a lot of her busy time to teach me and revise over step of this thesis.

To my family, all my colleagues and all those who helped me in this work, I am so thankful for their support and co-operation.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Nada Hammad Ald El Fattah

List of Contents

Title	Page No.
List of Tables	5
List of Figures	5
List of Abbreviations	6
Introduction	1
Aim of the Work	3
Review of Literature	
- Down syndrome	4
- Transient Myeloproliferative Disease in Down synd	rome 20
Subjects and Methods	30
Results	34
Discussion	55
Summary and conclusion	62
Recommendations	67
References	67
Arabic Summary	

List of Tables

Table N	o. Title	Page No.
Table (1):	Common medical problems in down syndrome.	10
Table (2):	Congenital heart diseases in Down syndrome	12
Table (3):	Causes of death in Down syndrome	19
Table (4):	Clinical features of TMD.	23
Table (5):	Demographic data of the studied group	34
Table (6):	Anthropometric measurements of the studied gro	oup35
Table (7):	Clinical manifestations of the studied group	35
Table (8):	Total and differential leukocytes count of the studie	ed group36
Table (9):	Erythrocytes and platelets characteristics of the studie	d group 37
Table (10):	Median age of the three studied groups	38
	Demographic data of the three studied groups	
Table (12):	Anthropometric measurements of the three studi	ed
	groups	
` /	Clinical manifestations of the three studied grou	
` /	Total leukocytes count of the three studied group	
Table (15):	The relative and differential leukocytes count of	
	three studied groups.	
Table (16):	Hemoglobin and hematocrit values of the three s	
	groups	
	Platelets characteristics of the three studied grou	
	Congenital heart diseases in the three studied gro	
, ,	Demographic data according to mutation results	
Table (20):	Anthropometric measurements of the two mutat	
	positive and mutation negative groups	
Table (21):	Clinical manifestations of the two mutation posi	
	mutation negative groups.	
Table (22):	Total leukocytes count and blast cell % according	_
	mutation results	
Table (23):	Hemoglobin and hematocrit values according to	
	mutation results	
	The platelets characteristics according to mutation resu	
` /	Congenital heart diseases according to mutation	results 52
Table (26):	The demographic data and presenting clinical	
	manifestations of the four mutation positive pati	
	Hematological characteristics of the four mutation	
	positive patients.	53

List of Figures

Fig. No.	Title Page N	0.
Figure (1):	Map of the frequency of expressed sequences encoded	
	on different parts of human chromosome 21	5
Figure (2):	Karyotype of a patient with nondisjunction Down	
	syndrome: 47, XY, +21	6
Figure (3):	Karyotype of a patient with translocation Down	
	syndrome: 46, XX, der (14;21), +21	7
Figure (4):	Karyotype of a patient with translocation Down	
	syndrome: 46, XX, der (21;21), +21	8
Figure (5):	Factors that potentially increase the susceptibility to	
	infections in Down syndrome	
Figure (6):	Models for the expression of GATA-1 isoforms	. 27
Figure (7):	Position and types of GATA1 sequence mutations	
	found in TMD and ML-DS samples	. 29
Figure (8):	Congenital heart diseases of the studied group.	. 37
Figure (9):	Age distribution of the three studied groups.	. 39
Figure (10):	Shows difference in total leukocytes count between the	
	three groups.	. 42
Figure (11):	MCV mean in the three groups.	. 43
	: Shows the patients associated with congenital heart	
	diseases within the three groups.	. 45
Figure (13):		
Figure (14):	Electropherogram of sequencing results of the exon 2of	
2 , ,	GATA 1 gene for the 15 patients.	. 47
Figure (15):	Shows the blast cells according to mutation results	
	Congenital heart disease of the two studied groups	

List of Abbreviations

Abb.	Full term
AFP	Alpha fetoprotein
AMKL	Acute megakaryocytic leukemia
APP	β-amyloid precursor protein
ASD	Atrial septal defect
AVSD	Atrio-ventricular septal defect
Αβ	β-amyloid peptide
CBC	complete blood count
CEP	Congenital erythropoietic porphyria
CH	Congenital hypothyroidism
CHD	Congenital heart disease
CRP	C-reactive protein
DNA	Deoxyribo-nucleic acid
DS	Down syndrome
DSCR	Down syndrome critical region
FISH	Flourescent in situ hybridization
GI	Gastrointestinal
GIT	Gastrointestinal tract
HPLC	high performance liquid chromatography
HSCs	Hematopoietic stem cells

List of Abbreviations

Abb.	Full term
Mb	Megabase
MEP	Megakaryocyte-erythrocyte progenitor
ML-DS	Myeloid leukemia in Down syndrome
MPNs	Myeloproliferative neoplasms
MI	meiosis I
МП	Meiosis Π
NT	Nuchal translucency
PAD	Patent ATRIAL duct
PCR	POLYMERASE chain reaction
PT21	Partial trisomy 21
RNA	Ribonucleic acid
Ss	Sanger sequencing
TAM	Transient abnormal myelopoiesis
TMD	Transient myeloproliferative disease
uE3	Unconjugated estriol
VSD	\$ventricular septal defect
WHO	World health organization
XLT	X-linked thrombocytopenia
XLTT	X-linked thrombocytopenia with thalassemiA
β-hCG	Human chorionic gonadotrophins

Introduction

In children with Down syndrome (DS), the risk of developing acute megakaryocytic leukemia (AMKI) is estimated to be 500 times higher than in children without DS (kanezaki et al., 2010).

Interestingly, neonates with DS are at a high risk 5-10% of developing a hematologic disorder referred to as transient myeloproliferative disease (TMD) (*Hitzler*, 2007). The World Health Organization (WHO) defines TMD as increased peripheral blood blast cells in neonates with DS (*Vardiman et al.*, 2009).

In about 60% of cases, TMD resolves spontaneously within the first 3 months of life (*Massey et al., 2006*). A small proportion of babies with TAM will die from their disease, usually due to liver failure caused by hepatic fibrosis and blast cell infiltration (*Klusmann et al, 2008; Gamis et al, 2011*).

An estimated 20% to 30% of babies with TMD subsequently develop MI-DS (Myeloid leukemia in DS). Thus, TMD is an important clinical problem (*Klusmann et al.*, 2008).

Acquired mutations in exon 2 of the hematopoietic transcription factor *GATA-1* mapped at Xp11.23 are consistently present in the affected cells of children with TMD and MI-DS, leading to expression of N-terminally truncated GATA-1 protein *(Cabelof et al., 2009)*.

GATA-

1 is a transcription factor that comprehensively regulates the gen es that are important for the development of erythroid and megak aryocytic cells. Accumulating evidence supports the notion that d efects in GATA-

1 function are intimately linked to hematopoietic disorders (Shim ızu and Yamamoto, 2012).

GATA-

1 mutation analysis showed that 8.5% of DS neonates had a GA

I mutation detected by Sanger sequencing/denaturing high perfo rmance liquid chromatography (Ss/DHPIC) (Roberts et al., 2013) . Similar to estimates from retrospective studies (5%-10%) (Malinge et al., 2009).

Xu et al. (2003) found the presence of GATA-1 mutations in 21 patients out of 22 patients Down syndrome with TMD and in 12 patients out of 18 patients Down syndr ome with AMKI.

Roberts et al. (2013) suggest that a practical and sensiti ve definition of TMD is the presence of blasts >10% on bloo d smears and a GATA-1 mutation detected by Ss/DHPIC.

AIM OF THE WORK

The aim of this study is to screen DS neonates with peripheral blasts for GATA-1 mutations. This facilitates regular clinical and laboratory follow up and ensures appropriate management of cytopenias that may precede AMI, including the timing of antileukemic therapy, any possibility of use of GATA-1 as a marker for cure.

Review of Literature -

Chapter 1

DOWN SYNDROME

Introduction

Trisomy for human chromosome 21 is the most frequent I iveborn aneuploidy and results in Down syndrome (DS). This is a well recognized syndrome with variable phenotypic expression (Gardiner et al., 2010).

The incidence of trisomy 21 is influenced by maternal age (*Wiesman et al., 2009*), It occurs in one in approximately 691 and 1000 newborns in the USA and Europe, respectively (*Jiang et al., 2015*).

Genotype of DS

Chromosome 21 is the smallest human autosome. It consists of ~ 50 Mb of DNA. The short arm is very small and a ll of the unique genes that have been located to this chromosome have been mapped to the long arm of the chromosome as shown in figure 1 (Kola and Hertzog, 1997).

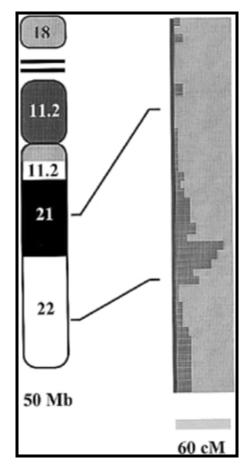
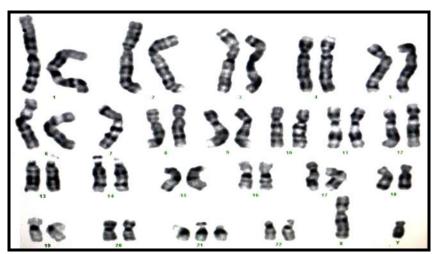


figure (1): Map of the frequency of expressed sequences encoded on different parts of human chromosome 21 (Kola and Hertzog, 1997).

The smallest chromosomal region in common among in dividuals who share a given feature is referred to as a 'Down syndrome critical region' (DSCR). The best-

defined DSCR extends \sim 5 Mb from D21S17 to MX1 in band 21q22.3. This segment contains about 33 conserved genes (O lson et al., 2007).


Mechanisms of DS

1. Nondisjunction:

Nondisjunction occurs in about 95% of people with Down syndrome (*Shin et al.*, 2010).

Nondisjunction is the failure of homologous chromoso mes or sister chromatids to segregate to separate daughter cells during cellular division. When this type of error occurs during meiosis, some of the resulting gametes will have too many or too few chromatids compared with the expected haploid number (aneuploidy) (Middlebrooks et al., 2014).

In~90% of trisomy 21 individuals, the additional chro mosome is maternal in origin, \sim 70% of the maternal errors h ave been found to occur during meiosis I (MI), while the oth er 30% occur during meiosis II (MII) (lamb et al., 1997).

figure (2): Karyotype of a patient with nondisjunction Down syndrome: 47, XY, +21. (Genetics Unit, Ain Shams University)

2. Translocation:

This type accounts for a small percentage of people with Down syndrome (about 3%) (*Shin et al., 2010*).

There is extra chromosome 21 material attached (transloc ated) onto another chromosome. For parents of a child with Do wn syndrome due to a translocation, there may be an increased chance of Down syndrome in future pregnancies. This is becaus e one of the two parents may be a carrier of a balanced transloc ation *(GHR, 2012)*.

figure (3): Karyotype of a patient with translocation Down syndrome: 46, XX, der (14;21), +21 *(Genetics Unit, Ain Shams University).*