

Ain Shams University
Faculty of Engineering
Electrical Power and Machines Department

A Power Smoothing of Wind Generators Based on a Flywheel Energy Storage System

By Abdallah Alaa Mohi El-Dien Abo ElNaga

B.Sc. Electrical Engineering, Ain Shams University, 2014

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in Electrical Engineering

Supervised by

Prof. Dr. / Hamdy Saleh Khalil El-Gohary

Faculty of Engineering, Ain Shams University

Prof. Dr. / Mostafa Ibrahim Mohamed Marei

Faculty of Engineering, Ain Shams University

EXAMINERS COMMITTEE

Name: Abdallah Alaa Mohi El-Dien Abo ElNaga

Thesis title: A Power Smoothing of Wind Generators Based on a Flywheel Energy Storage

System

Degree: Submitted in partial fulfillment of the requirements for the M.Sc. degree in

electrical engineering.

Name, title and affiliation

Signature

Prof. Samir Sayed Abdel-Hamid

Professor of Electric Power Faculty of Engineering, Helwan University

Prof. Ahmed Abdel-Sattar Abdel Fattah

Professor of Electric Power Faculty of Engineering, Ain Shams University

Prof. Hamdy Saleh Khalil El-Gohary

Professor of Electric Power Faculty of Engineering, Ain Shams University

Prof. Mostafa Ibrahim Mohamed Marei

Professor of Electric Power Faculty of Engineering, Ain Shams University

SUPERVISORS COMMITTEE

Name: Abdallah Alaa Mohi El-Dien Abo ElNaga

Thesis title: A Power Smoothing of Wind Generators Based on a Flywheel

Energy Storage System

Degree: Submitted in partial fulfillment of the requirements for the M.Sc.

degree in electrical engineering.

Name, title and affiliation

Signature

Prof. Hamdy Saleh Khalil El-Gohary

Professor of Electric Power Electrical Power and Machines department Faculty of Engineering, Ain Shams University

Prof. Mostafa Ibrahim Mohamed Marei

Professor of Electric Power Electrical Power and Machines department Faculty of Engineering, Ain Shams University

Researcher Data

Name : Abdallah Alaa Mohi El-Dien Abo ElNaga

Date of birth : 4/9/1991

Place of birth : Cairo

Academic Degree : B.Sc. in Electrical Engineering.

Field of Specialization : Electrical Power and Machines

University issued the degree : Faculty of Engineering, Ain-Shams University

Date of issued degree : 2014

Current job : Demonstrator in Faculty of Engineering, Ain-

Shams University.

STATEMENT

This Thesis is submitted to Ain Shams University in partial fulfillment of the

requirements for M.Sc. degree in Electrical Engineering.

The included work in this thesis has been carried out by the author at the

department of electrical power and machines, Ain Shams University. No part of

this thesis has been submitted for a degree or a qualification at any other

university or institution.

Date: / /2018

Signature:

Name: Abdallah Alaa Mohi El-Dien Abo ElNaga

ACKNOWLEDGEMENT

I would like to thank my supervisors: Professor Hamdy Saleh El-Gohary and Professor Mostafa Ibrahim Marei for their continuous support, encouragement, and giving me great ideas throughout my research study. They have great influence in my academic life. Finally, I would like to thank them for all what I have learnt from them.

I would like to thank my family for their continuous encouragement and support to complete my master degree and for their help in all my life.

Abstract

Wind energy is one of the most important renewable energy sources as it has high potential in many sites compared to other renewable sources. Its importance has been increased as many countries need to reduce their fossil fuel consumption and to reduce the greenhouse gas emissions. One of the main problems in wind energy is the fluctuations in the wind speed which in return affect the output wind power. Fluctuations in the output wind power have bad effects on the power quality especially in small grids such as Microgrids. Therefore, smoothing wind power is a vital process to allow increasing wind integration into the grid. One of the most favorable methods to smooth wind power is using energy storage devices like batteries, super capacitors, and flywheels.

This thesis proposes a control strategy to control the Flywheel Energy Storage System (FESS) driven by Reluctance Synchronous Machine (RSM) to smooth wind output power. First, the smoothed output power is determined by using second order adaptive notch filter (SOANF). Then, the back to back converter is controlled to supply the smoothed power to the grid. The Function of the RSM side converter is to control the charging/discharging process of the flywheel in order to absorb wind power fluctuations. This is done by using vector control strategy where the RSM rotor position is determined by using sensorless control based on ADALINE observer, while the grid side converter is controlled to keep the dc link voltage at constant value. Finally, the FESS driven by Permanent Magnet Synchronous Machine (PMSM) is examined. Then, another control strategy for the back to back converter is proposed, where the PMSM side converter is made responsible for controlling DC link voltage, while the grid side converter is responsible for controlling output grid power.

The dynamic performance of the proposed control strategies are studied using PSCAD/EMTDC software. The simulation results show acceptable behavior of the proposed filtering technique and the strength of the proposed control strategy for both converter sides. The results also validate the RSM rotor position estimation technique.

Keywords--Adaptive notch filter, back to back converter, Flywheel, RSM, ADALINE, Rotor Position Estimation, PMSM.

Table of Contents

EXAMINERS COMMITTEE	ii
SUPERVISORS COMMITTEE	iii
RESEARCHER DATA	iv
STATEMENT	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVIATION	xvi
LIST OF SYMBOLS	xvii
Chapter 1: INTRODUCTION	1
1.1 Wind Energy	1
1.2 Fly-Wheel Energy Storage Device	2
1.2.1 Compare between Flywheel and other Energy storage devices	2
1.2.2 Fly-wheel energy storage system components	4
1.3 Thesis Outline	6
Chapter 2: LITRATURE REVIEW	7
2.1 Flywheel Control Methods	7
2.2 Position Estimating Techniques for RSM	8
2.2.1 Fundamental model based techniques	8
2.2.2 Sensorless control based on Harmonic content	13
2.2.3 High frequency signal injection based technique	14
2.2.4 Hybrid Estimation Techniques	16
2.2.5 Other Techniques	18

CHAPTER 3: THE PROPOSED FLYWHEEL CONTROL STRATEGY	20
3.1 The System Model	. 20
3.1.1 The Flywheel model	21
3.1.2 The RSM Model	21
3.1.3 Back to Back Converter	22
3.2 The Proposed Control System	22
3.2.1 Grid side converter control based on stationary frame control	22
3.2.2 RSM side converter control	25
3.2.3 The Second Order Adaptive Notch Filter (SOANF)	. 26
3.3 RSM Rotor Position Estimation Technique	27
3.3.1 Rotor position estimation model for the RSM	27
3.3.2 MO-ADALINE Observer	28
3.3.3 The RSM Model for rotor position estimation using the MO-ADALINE	E30
3.4 The Proposed FESS Based on the PMSM	. 33
3.4.1 PMSM model	33
3.4.2 Control of the grid side converter based on PLL	34
3.4.3 Control of the PMSM side converter	34
CHAPTER 4: SIMULATION RESULTS	36
4.1 Introduction	. 36
4.2 The SOANF Performance Analysis	37
4.3 RSM Side Converter Performance Analysis	39
4.4 Grid Side Converter based on stationary frame controller Performance Ana	•
4.5 ADALINE Estimation Results	
4.6 Results of the flywheel driven by PMSM	
4.6.1Method 1: FESS driven by PMSM simulation Results	

4.6.2 Method 2: FESS driven by PMSM simulation Results	49
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS	52
5.1 Conclusions	. 52
5.2 Recommendations	. 53
APPENDIX 5	
REFERENCES	58

List of Tables

Table 1.1 Advantages and disadvantage of most popular machines used for	the :
FESS	5
Table 4.1 RSM Parameters	36
Table 4.2 PMSM parameters	45

List of Figures

Figure 1.1 Fly wheel energy storage system	2
Figure 1.2 Comparison between different storage energy devices according to the power ratings and charging/discharging time	
Figure 2.1 RSM position estimation using active flux observer	12
Figure 2.2 Vector diagram for actual and estimated d-q frame	14
Figure 3.1 Block Diagram of the proposed system	20
Figure 3.2 Grid side converter control based on stationary frame block diagram 2	23
Figure 3.3 Block diagram of unity templates reference generators for alpha and be	eta
components	24
Figure 3.4 RSM side converter control block diagram	25
Figure 3.5 Block diagram of the Second Order Adaptive Notch Filter	26
Figure 3.6 MO-ADALINE Mapping Structure	31
Figure 3.7 Tan and cot representation	31
Figure 3.8 Grid side converter control block diagram for FESS driven by PMSM system	
Figure 3.9 PMSM side converter control block diagram	35
Figure 4.1 Wind speed	36
Figure 4.2 Optimum angular turbine wind speed and its actual angular speed 3	37
Figure 4.3 Generated wind power	37
Figure 4.4 Wind power fluctuations extracted by using SOANF	38
Figure 4.5 Expected output grid power	38
Figure 4.6 Comparison between expected grid power using LPF and SOANF 3	38

Figure 4.7 Flywheel driven by RSM actual and reference output power	39
Figure 4.8 Flywheel driven by RSM power response	40
Figure 4.9 The reference values for the RSM quadrature and direct currents	40
Figure 4.10 The actual and reference RSM quadrature and direct currents components	40
Figure 4.11 DC Link voltage	41
Figure 4.12 Reference grid quadrature current component	42
Figure 4.13 output grid power	. 42
Figure 4.14 grid current phase (a)	42
Figure 4.15 Grid side voltages and current waveform	43
Figure 4.16 Tan and cot function of the estimated angle	44
Figure 4.17 The RSM actual and estimated position	44
Figure 4.18 Position estimation errors	44
Figure 4.19 The FESS driven by PMSM output and reference power –Method1.	45
Figure 4.20 Zoom of the FESS driven by PMSM output and reference power – Method1	46
Figure 4.21 PMSM quadrature and direct actual and reference current -Method1	46
Figure 4.22 RSM and PMSM response to sudden power changes	46
Figure 4.23 DC Link voltage –Method1	47
Figure 4.24 Output grid power –Method1	48
Figure 4.25 Grid reference quadrature current –Method1	48
Figure 4.26 Grid output currents waveforms in case of PLL control	48
Figure 4.27 Grid phase (a) voltage and phase current in case of PLL control	49

Figure 4.28 The PMSM quadrature and direct actual and reference currents –	
Method2	49
Figure 4.29 Flywheel power driven by PMSM –Method2	.50
Figure 4.30 DC Link voltage –Method2	. 50
Figure 4.31 Reference and output grid power –Method2	51
Figure 4.32 Quadrature reference grid current –Method2	51
Figure A.1 Relation between performance coefficient and tip speed ratio	54
Figure A.2 Wind side converter control block diagram	. 55
Figure A.3 Wind System in PSCAD Program	56
Figure A.4 wind speed input profile	. 56
Figure A.5 Output wind power	57