Influence of using zirconia primer on some properties of two resin cements bonded to zirconia

Thesis

Submitted to faculty of Dentistry
Ain-Shams University

In partial fulfillment of the requirements for the Master degree in Dental Biomaterials

By

Yasmin Ezz El Din Mahmoud

B.D.S (Ain-Shams University, 2009)
Instructor of Dental Materials
Biomaterials Department
Faculty of Dentistry
Ain-Shams University

Biomaterials Department
Faculty of Dentistry
Ain-Shams University
2018

Supervisors

Prof. Dr. Ghada Atef Alian

Professor of Dental Biomaterials
Biomaterials Department
Faculty of Dentistry
Ain-Shams University

Dr. Dalia Ibrahim Sherief

Lecturer of Dental Biomaterials
Biomaterials Department
Faculty of Dentistry
Ain-Shams University

Acknowledgment

I would like to express my sincere respect and gratitude to **Prof.Dr. Ghada Atef Alian**, Professor of Dental Biomaterials, Faculty of Dentistry, Ain-Shams University, for her great support and generosity in guiding and teaching me. Deep thanks Dr. Ghada for your endless support and your valuable guidance. I am really proud to be your student.

I wish to faithfully express my deepest thanks and gratitude to Dr.Dalia Ibrahim Sherief, Lecturer of Dental Biomaterials, Faculty of Dentistry, Ain-Shams University, for her great efforts in guiding me and her continuous support throughout this work. Thanks Dr.Dalia for your guidance and for treating me as one of your family.

My deepest thanks to all my professors and colleagues in the Biomaterials department for their continuous support and help throughout my work.

Dedication

I would like to dedicate this work to my beloved parents, they are the true reason behind any progress in my life.

I would also like to thank my amazing husband **Mahmoud**, for his endless encouragement and support. Thanks for sharing me my life.

Last but not least, to my adorable kids **Jana** and **Seif El Din** who are the source of happiness in my life. God bless you.

LIST OF CONTENTS

List of contentsI
List of TablesIV
List of figuresV
List of abbreviationsIX
Introduction1
Review of literature
1. Dental Zirconia3
1.1. Historical background
1.2. Microstructure of zirconia4
1.3. Types of zirconia6
1.3.1. Depending on the microstructure6
1.3.2. Depending on the type of stabilizer7
1.4. Properties of Y-TZP9
1.4.1. Physical properties9
1.4.2. Mechanical properties
1.4.2.1. Flexural strength10
1.4.2.2. Fracture toughness
1.4.2.3. Zirconia aging11
1.4.2.3.1. Subcritical crack growth(SCG)11
1.4.2.3.2. Low temperature degradation12

1.4.3	. Biological properties	13
1.5. Ap	oplications of zirconia in dentistry	14
1.5.1	. Fabrication of ceramic posts	14
1.5.2.	Zirconia based implants	14
1.5.3.	Fabrication of Implant Abutments	15
1.5.4.	Zirconia-Based Orthodontic Brackets	15
1.5.5.	Zirconia in removable prosthodontics	16
1.5.6.	Zirconia-Based fixed prostheses	16
1.6. Be	onding of dental zirconia	17
2. Zirco	nia primers	20
3. Resin	cements	22
3.1. C	Composition of resin cements	23
3.2. C	Classification of resin cements	23
3.2.	According to the method of curing	23
3.2.	2. Classification according to the adhesive scheme	25
3.3. F	actors affecting the performance of resin cements	29
3.3.1	Mechanical properties	29
3.3.2	2. Film thickness	29
3.3.3	3. Water sorption and solubility	29
3.3.4	Bond strength	32
3.3.5	5. Degree of conversion	32
4. Evalu	ating the effect of the zirconia primer on the performan	ice of resin
ceme	ent 33	

4.1. Bond strength evaluation	33
4.2. Water Sorption and solubility evaluation	37
4.3. Degree of conversion evaluation	37
Aim of the study	41
Materials & Methods	42
Results	63
Discussion	82
Summary and conclusions	99
References	102

LIST OF TABLES

Page
Table 1: Materials used in the study, their compositions,
manufacturers and lot numbers
Table 2: Means, Standard deviations (SD), and Standard errors (SE)
of shear bond strength (MPa) of both resin cements with and without
the primer at different storage time
Table 3: Percentage % of each mode of failure within different groups.
(CD=Control duolink, CB=Control Biscem, PD= Primer+ duolink,
PB= Primer+Biscem)69
Table 4:Means, standard deviations and, standard errors for water
sorption ($\mu g / mm^3$) of the two resin cements with and without the use
of the primer74
Table 5: Means, standard deviations (SD) and, standard errors of (SE)
for Solubility ($\mu g \ /mm^3$) results of the two resin cements with and
without the use of the primer76
Table 6: Means, Standard deviations (SD) and standard errors(SE) of
DC% of the two resin cements with and without primer application.
81

LIST OF FIGURES

Page
Figure 1: Structural formula of 10- MDP monomer, n=1022
Figure 2. The materials used in the study
Figure 3: Flow chart for bond strength specimens' grouping44
Figure 4: The prepared bond strength specimens
Figure 5: Macro-shear bond strength testing
Figure 6: Flow chart for water sorption, solubility and DC specimens' grouping
Figure 7. (A) Assembled split Teflon mold (B) Disassembled split Teflon mold (C&D) Steps of specimens preparation for water sorption and solubility test
Figure 8. Schematic diagram showing the curing technique of water sorption and solubility specimens
Figure 9: A photograph showing the specimens in the desiccator 52
Figure 10: A photograph showing water sorption specimen during weighing
Figure 11: A photograph showing the Teflon mold used for preparation of DC specimens
Figure 12: Schematic diagram for the mold used for DC specimens57
Figure 13: The mortar and pestle used in the specimens grinding 59

Figure 14: The pelleting device
Figure 15: The hydraulic press
Figure 16: A photograph showing FTIR spectrometer61
Figure 17: Schematic representation of the baseline method used to determine the ratio of the aliphatic absorbance peak (1638 cm-1) and
aromatic peak at (1608 cm-1). The peak heights were measured in
relation to the base line indicated by the red lines61
Figure 18: Column chart showing mean values of SBS at 24 h for different groups
Figure 19: Column chart showing mean values of shear bond strength at 6 months for different groups
Figure 20: Column chart showing mean values of SBS at 24 h and 6 months for different groups
Figure 21: A histogram showing %modes of failure in different groups.
Figure 22: Stereomicroscope image 20x showing the adhesive mode of failure
Figure 23: Stereomicroscope images 20x showing mixed mode of
failure
Figure 24: Stereomicroscope image 20x showing cohesive mode of failure
Figure 25: Scanning electron micrograph at 500x showing clean zirconia
surface indicating the adhesive mode of failure71

Figure 26: Scanning electron micrograph showing the mixed mode of
failure with low magnification 100x (a) and higher magnification 200x
(b), R is the remnants of detached resin cement specimen, Z is the
zirconia surface and the yellow arrows point to traces of the cement72
Figure 27: Scanning electron micrograph at 100x showing a cohesively
broken resin cement specimen, R is the resin cement specimen and Z is
the zirconia surface
Figure 28: Column chart showing mean values of water sorption for the
different groups74
Figure 29: Column chart showing mean values of solubility for different
groups76
Figure 30: Scanning electron micrograph at 100x of water sorption
specimens (BisCem group)77
Figure 31: Scanning electron micrograph at 100x of water sorption
specimens (BisCem+primer group). The arrows point to the air voids
present in the specimen
Figure 32: Scanning electron micrograph at 100x of water sorption
specimens (Duolink group)
Figure 33: Scanning electron micrograph at 100x of water sorption
specimens (Duolink+primer group). The arrows point to the air voids
present in the specimen
Figure 34: Column chart showing mean degree of conversion in different
groups81
Figure 35: Models suggested for mechanism of primer bonding 88

List of abbreviations

Abbreviation	Explanation
6-MHPA	6-methacryloyloxyhexyl phosphonoacetate
ADA	American Dental Association
ANOVA	Analysis of variance
AR	Adhesive resin cements
ATR	Attenuated total reflectance
Bis-GMA	Bisphenol A-glycidyl methacrylate
BPDMA	Biphenyl dimethacrylate
C	Cubic phase
Ce-TZP	Ceria stabilized zirconia
CR	Conventional resin cements
CQ	Camphorquinone

DC	Degree of conversion
DSC	Differential scanning calorimetry
DTA	Differential thermal analysis
EDMAB	Ethyl-4-dimethylaminobenzoate
EPR	Electron paramagnetic resonance
Er:YAG	Erbium-doped yttrium aluminium garnet laser
FIR	Far-infraed
FPD	Fixed partial denture
FTIR	Fourier transform infrared spectroscopy
HEMA	Hydroxyethyl methacrylate
IR	Infrared
ISO	International Organization for Standardization
K.V	Kilovoltage
KBr	Potassium bromide
LED	Light emitting diode
LTD	Low temperature degradation

M	Monoclinic phase
MDP	Methacryloyloxydecyl dihydrogen phosphate
MEHQ	4-Methoxyphenol
META	4-methacrylethyl trimellitic anhydride
Mg-PSZ	Magnesia partially stabilized zirconia
MIR	Mid-infrared
NIR	Near-infared
NMR	Nuclear magnetic resonance
Phenyl-p	2-Methacryloyloxyethyl phenyl phosphate
PMGDM	Pyromellitic glycerol dimethacrylate
PMGDM	Pyromellitic glycerol dimethacrylate
PPD	Phenyl propanedione
PSZ	Partially stabilized zirconia
R	Resin cement