Structured Home Versus Supervised Hospital based Exercise Rehabilitation in Patients with Intermittent Claudication: Effects on Functional Capacity and Quality of Life A Randomized Clinical Trial

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

By

Ahmed Mohamed Nasr El-Din El-Sayed MBBCH

Supervised by

Doctor. Ahmed Mohamed Fathey Tamara

Assistant Professor of Cardiology Faculty of Medicine -Ain Shams University

Doctor. Hany Mohamed Fakhry

Lecturer of Cardiology Faculty of Medicine -Ain Shams University

Doctor. Yasser Alaa El-Din Mahmoud

Lecturer of Cardiology Faculty of Medicine -Ain Shams University

Cardiology Department
Faculty of Medicine - Ain Shams University
2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Doctor/ Alhmed**Mohamed Fathy Tamara, Assistant Professor of Cardiology - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr/ Hany Mohamed Fakhry,** Lecturer of Cardiology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Dr/ **Yasser Alaa Eldin Mahmoud**, Lecturer of Cardiology, Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Ahmed Mohamed Nasr

List of Contents

Title	Page No.
List of TablesError! Bo	ookmark not defined.
List of Figures Error! Be	ookmark not defined.
List of Abbreviations Error! Bo	ookmark not defined.
Introduction	1
Aim of the Work	3
Review of Literature	
Lower Extremity Artery Disease (LEA	AD)4
Exercise Rehabilitation for Lower Ex Disease	xtremity Artery
Patients and Methods	54
Results	72
Discussion	103
Summary	113
Study Limitations	116
Conclusion	117
Recommendations	118
References	119
Arabic Sumamry	

List of Tables

Table No.	Title	Page No.
Table (1):	Clinical stages of Lower Extremity Ar Disease	· ·
Table (2):	Distance Subscale of Walking Impairs Questionnaire	
Table (3):	Speed Subscale of Walking Impairm Questionnaire	
Table (4):	Stair Subscale of Walking Impairm Questionnaire	
Table (5):	Vascular Quality of Life Questionnai facilitates health-related quality of assessment in peripheral arterial disease	life
Table (6):	Demographic data, risk fact Anthropometric measurements, Hb. and ABI in whole study population be Exercise Rehabilitation	A1C efore
Table (7):	Correlation between QOLQ and WIG baseline with COT & PWT at baselin both groups	e in
Table (8):	Comparison between the two studied granding Demographic Data, Risk Fact HbA1C, ABI, Anthropometric measurement Functional Capacity Parameters (COT&P and Questionnaires (WIQ&QOLQ) be Exercise Rehabilitation	tors, ents, WT) efore
Table (9):	Comparison regarding Anthropomore measurement, HbA1C, ABI, lipid profunctional capacity measurements, and QOLQ before and after Exer Rehabilitation in group A	ofile, WIQ ccise

List of Cables (Cont...)

Table No.	Title	Page No.
Table (10):	Comparison regarding Anthropom measurement, HbA1C, ABI, lipid profunctional capacity measurements, and QOLQ before and after Exer. Rehabilitation in group B	ofile, WIQ rcise
Table (11):	Comparison between the two stugroups regarding Anthropom measurements, Lipid profile, HbA1C, Functional capacity and Questionnaire	etric ABI,
Table (12):	Comparison between the mean characteristic between both groups regar Anthropometric measurements, I profile, HbA1C, ABI, Functional capa and Questionnaires	ding Lipid acity

List of Figures

Fig. No.	Title	Page No.
Figure (1):	ABI measurements using Dopples Sonography	
Figure (2):	Comprehensive management of patient with Lower Extremity disease (LEAD)	artery
Figure (3):	Assessment of the risk of amputati WIFI classification	
Figure (4):	Smoking in the studied population.	73
Figure (5):	Lipid profile in the studied populati	on74
Figure (6):	Correlation between COT and QO baseline in both groups.	
Figure (7):	Correlation between COT and V baseline in both groups.	
Figure (8):	Correlation between PWT and V baseline in both groups.	-
Figure (9):	Correlation between PWT and Que baseline in both groups.	
Figure (10):	Comparison between the two groups regarding risk factors Exercise Rehabilitation	before
Figure (11):	Comparison between the two groups regarding lipid profile Exercise Rehabilitation.	before
Figure (12):	Comparison between the two groups regarding COT & PWT Exercise Rehabilitation.	before

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (13):	Comparison between the two groups regarding WIQ and QOLO Exercise Rehabilitation	Q before
Figure (14):	Lipid profile in group A before an Exercise Rehabilitation.	
Figure (15):	Anthropometric measurements in before and after Exercise.	~ -
Figure (16):	ABI findings in group A before at Exercise Rehabilitation.	
Figure (17):	COT and PWT in group A before a Exercise Rehabilitation	
Figure (18):	WIQ and QOLQ in group A befafter Exercise Rehabilitation	
Figure (19):	Anthropometric measurements in before and after Exercise Rehabilit	_
Figure (20):	Lipid Profile findings in group E and after Exercise Rehabilitation	
Figure (21):	ABI findings in group B before an Exercise Rehabilitation.	
Figure (22):	COT and PWT in group B before a Exercise Rehabilitation	
Figure (23):	WIQ and QOLQ in group B befafter Exercise Rehabilitation	
Figure (24):	Comparison between both group Exercise Rehabilitation regarding profile	g Lipid

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (25):	Comparison between the two groups after Exercise Rehab regarding HbA1C, Weight an findings.	ilitation d BMI
Figure (26):	Comparison between the two groups after Exercise Rehab regarding ABI.	ilitation
Figure (27):	Comparison between the both groups after Exercise Rehab regarding COT, PWT, WIQ and QO	ilitation
Figure (28):	Comparison between the 2 groregards mean difference after program from the baseline measuregarding anthropometric measurelabeled investigation (lipid prof. HbA1C)	exercise rements rements ile and
Figure (29):	Comparison between both gro regard mean change after program from the baseline measu as regards COT, PWT, WIQ and Qu	exercise rements

List of Abbreviations

Abb.	Full term
ARI	Ankle Brachial Index
	Ankle Brachial Pressure Index
	Acute Limb Ischemia
	Ankle Pressure
	Body Mass Index
	Chronic Limb Ischemia
CLTI	Chronic Limb Threatening Ischemia
COT	Claudication Onset Time
CTA	Computed Tomography Angiography
CVD	Cardiovascular Diseases
DBP	Diastolic Blood Pressure
DFUs	Diabetic Foot Ulcers
DNA	Deoxyribonucleic Acid
DSA	Digital Subtraction Angiography
DUS	Duplex Ultrasound
ECs	$ Endothelial\ Cells$
<i>ExT</i>	Exercise Therapy
fI	Foot Infection
HbA1c	Hemoglobin
HDL	High-Density Lipoprotein
<i>I</i>	Is chaemia
<i>IC</i>	Intermittent Claudication
<i>IL</i>	Interleukin
<i>LDL</i>	Low-Density Lipoprotein

List of Abbreviations (cont...)

Abb.	Full term
<i>MDCT</i>	.Multidetector Computed Tomography
<i>MET</i>	$. Metabolic\ Equivalents$
PWT	.Peak walking Time
QOLQ	. Quality of Life Questionnaire
SBP	.Systolic Blood Pressure
SET	.Supervised Exercise Therapy
sICAM	.Soluble Intercellular Adhesion Molecule
SVS	.Society for Vascular Surgery
TNM	.Tumor, Node, Metastasis
VCAM	.Vascular Cell Adhesion Molecule
VEGFA	$. Vascular\ endothelial\ growth\ factor\ A$
vWF	von Willbrand Factor
W	. Wound
WIFI	. Wound, Ischemia and Foot Infection
<i>WIQ</i>	. Walking Impairment Questionnaire

Abstract

At the end of the 12 weeks of rehabilitation program per both groups. Primary outcomes measures included Claudication Onset Time (COT) and Peak Walking Time (PWT). Secondary outcomes measures included Walking Impairment Questionnaire (WIQ) & Health related Quality Of Life Questionnaire (QOLQ) & anthropometric measures including Body weight, BMI and laboratory results including Lipid Profile, HBA1C.

Medically supervised exercise programs are efficacious for improving COT and PWT, but more patients could benefit from an exercise program transported to the community setting (ie, home-based walking).

Keywords: Ankle Brachial Index - Ankle Brachial Pressure Index - Chronic Limb Ischemia

INTRODUCTION

ower Extremity arterial disease (LEAD) is a chronic ▲atherosclerotic cardiovascular disease in which stenosis and/or occlusions of the peripheral arteries limit blood flow to the legs. The age-adjusted prevalence is approximately 10%, increasing to 20% in individuals aged >70 years. The classic symptom of mild-to-moderate LEAD is intermittent claudication (IC), which is lower limb pain or discomfort that is induced by walking and relieved by rest. IC decreases functional capacity and quality of life, and is associated with an increased risk of cardiovascular morbidity and mortality (Norgren et al., 2007).

A primary treatment option for patients with IC is a program of supervised walking exercise, typically delivered as a 3-month program in a hospital or healthcare clinic. Medically-supervised exercise programs have demonstrated clinical efficacy with large improvements noted for pain-free and maximum walking distances/ times. Improvements in patient-reported outcomes and measures of cardiovascular health have also been reported. Despite this evidence and the current recommendations, supervised exercise programs are largely under-utilised, possibly owing to lack of reimbursement from insurance companies, the likelihood that only a small proportion of patients would be able to attend regularly, and concerns regarding long-term cost-effectiveness. As a result, exercise is most commonly promoted in the form of basic

advice to "go home and walk". Patients receiving such "usual care" have often served as the control group in clinical trials, and research suggests this approach is ineffective. This has prompted increased interest in the development of structured interventions that promote self managed walking in the community (home-based exercise programs). However, the role of Home-based exercise programs in the management of LEAD/IC is currently unclear. To inform the development of a coherent evidence-base with which to direct future research and disease-management policy we conducted a randomized clinical Trial of Home-based exercise programs in patients with IC (*Makris et al. 2012*).

Supervised treadmill exercise significantly improves walking performance in people with lower-extremity artery disease (LEAD). However, 3 times weekly visit to the medical center for supervised exercise is burdensome for people with LEAD and medical insurance does not cover supervised treadmill exercise. Thus, most people with LEAD do not participate in supervised treadmill exercise programs. In addition, whether benefits from supervised treadmill exercise are sustained after LEAD patients complete a supervised exercise program is unclear. Identifying a walking exercise program that does not require 3 times weekly visit to the medical center and achieves sustained improvement in walking performance over long-term follow-up is an important treatment goal for people with LEAD (Fakhry et al., 2012).

AIM OF THE WORK

The aim of the study is to evaluate the effect of 12 weeks of structured home based rehabilitation program on functional capacity and quality of life in comparison to 12 weeks of supervised hospital –based rehabilitation program.