

Mode of Action of Curcumin and Its Nanoparticles in Chemically Induced Liver Carcinoma in Male Albino Mice

A Thesis
Submitted in Partial Fulfillment for the Degree of
Master of Science in Zoology

By **Eman Shawky Mohammed Salem Ali**B.Sc. (Zoology), 2009

Supervisors

Prof. Dr. Nadia Mohamed Abd El-Aziz El-Beih

Professor of Physiology, Department of Zoology, Faculty of Science, Ain Shams University

Prof. Dr. Mona Mohamed Kamel Zoheiry

Professor of Immunology, Department of Immunology, Theodor Bilharz Research Institute

Dr. Enas Ali El-Hussieny

Assistant Professor of Physiology, Department of Zoology, Faculty of Science, Ain Shams University

ACKNOWLEDGEMENT

First, I would like to thank **Almighty ALLAH** for seeing me through out this work and helping me to complete it. Without the aid of ALLAH, His Mercy and Bounty, I would not have been able to complete this work.

I would like to express my special appreciation and thanks to my supervisor **Prof. Dr. Nadia El-beih**, Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University, you have been a tremendous mentor for me. I would like to thank you for encouraging my research, unvaluable guidance and advice. I feel so blessed to have been given the opportunity to be your student.

I would also want to extend my profound gratitude to **Prof. Dr. Mona Zoheiry**, Professor of Immunology, Immunology Department, Theodor Bilharz Research Institute, without your precious support and continuous motivation it would not be possible to fulfill this research. I would like to say that your effective supervision, patience and generosity of spirit are something I will carry with me forever.

I am profoundly grateful to **Dr. Enas El-Hussieny**, Assistant Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University, for perfect guidance, precious support, patience and clear advice. I am really so appreciative of your enthusiasm for scientific research and immense knowledge.

My words will fail to express my deepest thanks to **Prof. Dr. Eman El-ahwany**, Professor of Immunology, Immunology Department, Theodor Bilharz Research Institute, her constructive remarks and perceptive views have helped me to progress in this research. Also, I am greatly grateful for funding this work through her research project.

I am sincerely grateful to **Dr. Hoda Abu Taleb**, Lecturer of Medical Biostatistics, Environmental Research Department, Theodor Bilharz Research Institute, for her participation in doing the statistical analysis of the study. Also, I would like to thank her for invaluable support and advice. I have been fortunate to learn from her vast experience.

I also express my deep thanks to **Prof. Dr. Ibraheem Aly** and **Prof. Dr. Soheir Mahmoud**, from Parasitology Department, Theodor Bilharz Research Institute for their encouragement, perfect assistance, guidance and stimulating suggestions.

A special gratitude to **Dr. Marwa Hassan**, Lecturer of Immunology, Immunology Department, Theodor Bilharz Research Institute, for her perfect assistance in the practical part of the study.

Finally, I must express my very profound gratitude to **my deer parents** and to **my brother** for continuous support and encouragement throughout my years of study. This accomplishment would not have been possible without them.

Eman Shawky

LIST OF ABBREVIATIONS

8-oxodG	8-Oxo-7,8-dihydroguanine
AFB1	Aflatoxin B1
AFP	Alpha-fetoprotein
AgNO3	Silver nitrate
ALAT	Alanine aminotransferase
Alb	Albumin
ALP	Alkaline phosphatase
AMP	2-amino-2-methyl-1-propanol
ANOVA	analysis of variance
AP-1	Activator protein-1
Apaf-1	Apoptotic protease activating factor-1
ASAT	Aspartate aminotransferase
b.w	Body weight
BAK	BCL2-Antagonist Killer
Bax	Bcl-2-associated X protein
Bcl-2	B cell lymphoma 2
Bcl-xL	B cell lymphoma-extra large (antiapoptotic protein)
BMI	Body mass index
CAT	Catalase
CCl4	Carbon tetrachloride
cDNA	Complementary Deoxyribonucleic Acid
COX-2	Cyclooxygenase-2
C_T	Cycle threshold
Cur	Curcumin
CYP 2E1	Cytochrome P450 2E1
Cyt c	Cytochrome c
DEN	Diethyl nitrosamine
DHBS	3,5-Dichloro -2-hydroxybenzene sulfonic acid
DR5	Death receptor-5
DTNB	5, 5' dithiobis-2- nitrobenzoic acid
EDTA	Ethylene diamine tetraacetic acid
EGFR	Epidermal growth factor receptor

ELISA	Enzyme linked immunosorbent assay
ER	Endoplasmic reticulum
ERK	Extracellular receptor kinase
ERK	Extracellular signaling Regulating kinase
FADD	Fas-associated death domain
FGF	Fibroblastic growth factor
G-6-PD	Glucose-6-phosphate dehydrogenase
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase
GPx	Glutathione peroxidase
GR	Glutathione reductase
GS	Glutathione synthetase
GSH	Glutathione reduced
GSK3β	Glycogen synthase kinase 3 beta
GSSG	Glutathione disulfide
GST	Glutathione-S-transferase
H&E	Hematoxylin and eosin.
H2O2	Hydrogen peroxide
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HD	High dose
HIF-1α	Hypoxia-inducible factor-1α
HRP	Horseradish peroxidase
i.p	Intraperitoneal
IAPs	inhibitory apoptosis proteins
IKK	Inhibitory κB kinase
IL-8	Interleukin-8
iNOS	Inducible nitric oxide synthase
JNK	C-jun N-terminal kinase
KEAP	Kelch-like ECH-associated protein
LD	Low dose
LDH	Lactate dehydrogenase
LSD	Least significant difference
MAPK	Mitogen activated protein kinase

TATE A	3.6.1 11.111.1
MDA	Malondialdhyde
MDH	Malate dehydrogenase
MMP	Matrix metalloproteinase.
mRNA	Messenger Ribonucleic acid
NAD^+	Nicotinamide adenine dinucleotide
NADH	Nicotinamide adenine dinucleotide (reduced
	form)
NADP ⁺	Nicotinamide adenine dinucleotide phosphate
NADPH	Nicotinamide adenine dinucleotide phosphate
	(reduced form)
NAFLD	Nonalcoholic fatty liver disease
Nano Cur	Nanoparticulate curcumin
NASH	Non-alcoholic steatohepatitis
NBT	Nitroblue tetrazolium
NEMO	NF-kappa-B essential modulator
NF-κB	Nuclear Factor kappa B
NK cells	Natural killer cells
NO	Nitric oxide
NO ⁻	Nitric oxide radical
NO_2^-	Nitrites
NOXA	NADPH oxidase activator.
Nrf-2	Nuclear factor (erythroid-derived 2)-like 2
O2 ⁻	Superoxide radical
OCs	Oral contraceptives
OD	Optical density
OH.	Hydroxyl radical
ONOO-	Peroxynitrite
P53	Tumor Suppressor Protein
PBS	Phosphate buffered saline
PMS	Phenazine methosulphate
pNPP	p-nitrophenylphosphate
PUMA	P53 upregulated modulator of apoptosis
PVP	polyvinyl pyrrolidine

RNS	Reactive nitrogen species
ROS	Reactive oxygen species
SEM	Standard errors of mean
SOD	Superoxide dismutase
STAT	Signal transducers and activators of transcription
Tak1	TGF-beta activated kinase 1
TBA	Thiobarbituric acid
TEM	Transmission electron microscope
TGF-β	Transforming growth factor beta
TGF-α	Transforming growth factor alpha
TLR4	Toll-like receptor4
TNFR1	Tumor necrosis factor receptor-1
TNF-α	Tumor-Necrosis-Factor-alpha
TP	Total protein
VEGF	Vascular endothelial growth factor
γ-GCS	γ-glutamyl cysteine synthetase

LIST OF TABLES

Table No.	Title	Page
(1)	Serum aspartate aminotransferase (ASAT) activity (IU/L) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	75
(2)	Serum alanine aminotransferase (ALAT) activity (IU/L) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	77
(3)	Serum alkaline phosphatase (ALP) activity (IU/L) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	81
(4)	Serum total protein (TP) level (g/dl) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	83
(5)	Serum albumin (Alb) level (g/dl) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	85
(6)	Serum albumin (Alb) level (g/dl) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	92
(7)	Serum alpha-1 globulin level (g/dl) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	94

(8)	Serum alpha-2 globulin level (g/dl) of normal and	96
	DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	
	of hanoparticulate curcumin.	
(9)	Serum beta-globulin level (g/dl) of normal and DEN-	98
	injected male albino mice treated with either free or	
	nanoparticulate curcumin.	
(10)	Serum gamma-globulin level (g/dl) of normal and	100
	DEN-injected male albino mice treated with either free	
	or nanoparticulate curcumin.	
(11)	Serum tumor necrosis factor alpha (TNF-α) level	115
()	(pg/ml) of normal and DEN-injected male albino mice	
	treated with either free or nanoparticulate curcumin.	
	-	44=
(12)	Serum vascular endothelial growth factor (VEGF) level	117
	(pg/ml) of normal and DEN-injected male albino mice	
	treated with either free or nanoparticulate curcumin.	
(13)	Serum alpha fetoprotein (AFP) level (ng/ml) of normal	119
	and DEN-injected male albino mice treated with either	
	free or nanoparticulate curcumin.	
(14)	Liver superoxide dismutase (SOD) activity (U/g) of	124
	normal and DEN-injected male albino mice treated	
	with either free or nanoparticulate curcumin.	
(15)	Liver glutathione reduced (GSH) level (mmol/g) of	126
(13)		120
	normal and DEN-injected male albino mice treated	
	with either free or nanoparticulate curcumin.	

(16)	Liver catalase activity (U/g) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	128
(17)	Liver glutathione peroxidase (GPx) activity (U/g) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	130
(18)	Liver malondialdhyde (MDA) level (nmol/g) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	134
(19)	Liver nitric oxide (NO) level (µmol/g) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	136
(20)	Liver nuclear factor kappa B (NF-kB) mRNA level of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	148
(21)	Liver caspase 3 mRNA level of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	151
(22)	Liver tumor suppressor protein (P53) mRNA level of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	154

LIST OF FIGURES

Review of Literature

Fig. No.	Title	Page
(1)	Schematic representation of pathways involved in p53 mediated apoptosis.	16
(2)	Curcuma longa Linn. Plant with flower, Freshly cut rhizome, Turmeric powder-dried and powdered rhizome.	25
(3)	Chemical structure of curcumin I, curcumin II, curcumin III.	26
(4)	Stages of tumor progression inhibited by curcumin.	30
(5)	Antioxidant enzymes schematic.	32
(6)	Curcumin inhibits TLR4-induced activation of NF-κB through IKKa and IKKb.	35
(7)	A model representing curcumin molecular targets in the extrinsic and intrinsic apoptotic pathways.	38

Results

(8)	Serum aspartate aminotransferase (ASAT) activity (IU/L) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	76
(9)	Serum alanine aminotransferase (ALAT) activity (IU/L) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	78

(10)		0.2
(10)	Serum alkaline phosphatase (ALP) activity (IU/L) of	82
	normal and DEN-injected male albino mice treated with	
	either free or nanoparticulate curcumin.	
(11)	Serum total protein (TP) level (g/dl) of normal and DEN-	84
	injected male albino mice treated with either free or	
	nanoparticulate curcumin.	
	-	
(12)	Serum albumin (Alb) level (g/dl) of normal and DEN-	86
	injected male albino mice treated with either free or	
	nanoparticulate curcumin.	
(13)	Serum albumin (Alb) level (g/dl) of normal and DEN-	93
	injected male albino mice treated with either free or	
	nanoparticulate curcumin.	
	nanoparticulate carcannii.	
(14)	Serum alpha-1 globulin level (g/dl) of normal and DEN-	95
	injected male albino mice treated with either free or	
	nanoparticulate curcumin.	
(15)	Serum alpha-2 globulin level (g/dl) of normal and DEN-	97
	injected male albino mice treated with either free or	
	nanoparticulate curcumin.	
	-	
(16)	Serum beta-globulin level (g/dl) of normal and DEN-	99
	injected male albino mice treated with either free or	
	nanoparticulate curcumin.	
(17)	Serum gamma-globulin level (g/dl) of normal and DEN-	101
	injected male albino mice treated with either free or	
	nanoparticulate curcumin.	
II	nanoparticulate curcumin.	

(18 a)	Photograph of cellulose acetate serum protein	102
	electrophoresis (I) and its scan (II - VII) of the male	
	albino mice of the normal control group.	
(18 b)	Photograph of cellulose acetate serum protein electrophoresis (I) and its scan (II - VII) of the male albino mice treated with silver nanoparticles (nano control group).	103
(18 c)	Photograph of cellulose acetate serum protein electrophoresis (I) and its scan (II - VII) of the male albino mice treated with the low dose of free curcumin.	104
(18 d)	Photograph of cellulose acetate serum protein electrophoresis (I) and its scan (II - VII) of the male albino mice treated with the high dose of free curcumin.	105
(18 e)	Photograph of cellulose acetate serum protein electrophoresis (I) and its scan (2-7) of the male albino mice treated with the low dose of nanoparticulate curcumin.	106
(18 f)	Photograph of cellulose acetate serum protein electrophoresis (I) and its scan (II - VII) of the male albino mice treated with the high dose of nanoparticulate curcumin.	107
(18 g)	Photograph of cellulose acetate serum protein electrophoresis (I) and its scan (II - VII) of the male albino mice of DEN-injected group.	108
(18 h)	Photograph of cellulose acetate serum protein electrophoresis (I) and its scan (II - VII) of the male	109

	albino mice injected with DEN and treated with the low	
	dose of free curcumin.	
(18 i)	Photograph of cellulose acetate serum protein electrophoresis (I) and its scan (II - VII) of the male albino mice injected with DEN and treated with the high dose of free curcumin.	110
(18 j)	Photograph of cellulose acetate serum protein electrophoresis (I) and its scan (II - VII) of the male albino mice injected with DEN and treated with the low dose of nanoparticulate curcumin.	111
(18 k)	Photograph of cellulose acetate serum protein electrophoresis (I) and its scan (II - VII) of the male albino mice injected with DEN and treated with the high dose of nanoparticulate curcumin.	112
(19)	Serum tumor necrosis factor alpha (TNF-α) level (pg/ml) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	116
(20)	Serum vascular endothelial growth factor (VEGF) level (pg/ml) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	118
(21)	Serum alpha fetoprotein (AFP) level (ng/ml) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	120
(22)	Liver superoxide dismutase (SOD) activity (U/g) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	125

(23)	Liver glutathione reduced (GSH) level (mmol/g) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	127
(24)	Liver catalase activity (U/g) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	129
(25)	Liver glutathione peroxidase (GPx) activity (U/g) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	131
(26)	Liver malondialdhyde (MDA) level (nmol/g) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	135
(27)	Liver nitric oxide (NO) level (µmol/g) of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	137
(28)	Histopathological examination of liver sections of the normal male albino mice.	141
(29)	Histopathological examination of liver sections of DEN-injected male albino mice.	143
(30 a)	Liver nuclear factor kappa B (NF-kB) mRNA level of normal and DEN-injected male albino mice treated with either free or nanoparticulate curcumin.	149
(30 b)	Amplification plots of nuclear factor kappa B (NF-kB) gene expression by real time PCR.	150