

Evaluation of the Antitumor Effects of Some Fractions Isolated From *Cerastes cerastes* **Viper Venom**

A Thesis

Submitted for the degree of Master of Science as a partial fulfillment for requirements of M.Sc. degree in Zoology, Physiology

Submitted by Dina Mahmoud Hamed El-Gridly

(B.Sc. in Zoology, 2010)

Under the supervision of **Prof. Dr. Ahmed Refaat Ezzat**

Professor of Physiology, Zoology department, Faculty of Science, Ain Shams University

Prof. Dr. Ali Mohamed Ali Abd El-Aal

Professor of Physiology, Zoology department, Faculty of Science, Ain Shams University

Dr. Manal Asem Emam

Assistant professor of Biochemistry, Biochemistry department, Faculty of Science, Ain Shams University

Faculty of Science Ain Shams University 2018

تقييم التأثيرات المضادة للأورام لبعض مفصولات سم الأفعى سيرستس سيرستس رسالة مقدمة للحصول على درجة الماجستير في العلوم كجزء مكمل لمتطلبات رسالة الماجستير في علم الحيوان – علم وظائف الأعضاء بكلية العلوم جامعة عين شمس

مقدمة من

دينا محمود حامد الجريدلى

معيدة بقسم علم الحيوان - كلية العلوم - جامعة عين شمس

تحت إشراف

أ.د. أحمد رفعت عزت

أستاذ الفزيولوجي- قسم علم الحيوان- كلية العلوم- جامعة عين شمس

أ.د. على محمد على عبد العال

أستاذ الفزيولوجي- قسم علم الحيوان- كلية العلوم- جامعة عين شمس

د. منال عاصم إمام

أستاذ مساعد بقسم الكيمياء الحيوية - كلية العلوم - جامعة عين شمس

كلية العلوم جامعة عين شمس ٢٠١٨

Acknowledgement First and foremost, cordial thanks to Allah.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Ahmed Refaat Ezzat** Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University for planning and supervision this work. I specially appreciate his critical reading of the manuscript and his valuable discussions from which I have learned a lot.

No words could express my sincere appreciation and deepest thanks to **Prof. Dr.Ali Mohamed Ali Abd El-Aal** Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University for his endless help, professional guidance, creative thinking, valuable suggestions and constant advice throughout this work.

I am also thankful for **Dr. Manal Asem Emam**, Assistant Professor of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University, for broadening my scientific skills, and the help she provided during the practical work.

I would also like to express my thanks to **Prof. Dr. Gamal Morsy** Professor of Physiology, Zoology Department, Faculty of Science, Cairo University for his valuable time and his support and help, especially in performing the statistical analyses.

Letters and words cannot express my feelings and deep gratitude to **Prof. Dr. Aly Fahmy Mohamed El-Sayed** Head of Research and Development sector, Vacsera and **Prof. Dr. Abir Elfiky** Director of ANDI center and Excellence in antivenom research, Vacsera, for the unconditional help and support. I particularly praise the kindness they extended on me during the performance of the practical work.

Finally, I would like to express my sincere gratitude to the members of the **Regional Center for Mycology and Biotechnology**, Alazhar University, for their help and support without which, this work would not have been possible.

Dedication

I would like to dedicate my thesis to my parents to whom I owe everything, my husband and my friends and colleagues at the Zoology department for their love, encouragement and support that made the studies possible and allowed me to achieve my goals.

To all of them, I dedicate this work.

Dina Mahmoud Hamed

CONTENTS

Title	Page
Acknowledgement	
Abstract	
Contents	I
List of abbreviations	IV
List of tables	VIII
List of figures	XIII
Introduction	1
Aim of the work	5
Review of literature	7
Components of snake venoms	7
Chemotherapy	11
Effect of cisplatin and doxorubicin on cancerous cells	12
Effect of snake venoms on cancer cells	17
Snake venom components with antitumor activity	18
Materials and Methods	30
Venom Source and Collection	30
Experimental Animals	30
Cell line	30
Chemicals	30
Fractionation of the Crude Venom	31
Re-fractionation of Cerastes cerastes Fractions on	32
Sephadex G-50 Column	
Sodium Dodecyl Sulphate Polyacrylamide Gel	32
Electrophoresis	
Determination of Phospholipase A ₂ Activity	33
Determination of the Proteolytic Activity	34
Determination of the 50 % Inhibitory Concentration	34
(IC_{50})	
Morphological Studies	36
Anti-proliferative Activity of Crude Venom and its	36

Fractions in Combination with the Drugs	
Flow cytometric analysis	37
Cell Cycle Analysis	37
Determination of Caspase-3/7 Concentration	38
Apoptosis Assay	38
Determination of the Median Lethal Dose (LD ₅₀)	38
Determination of the Mortality Rate	41
Statistical analysis	43
Results	44
Fractionation of the Crude Venom	44
Determination of Phospholipase A ₂ activity	44
Determination of the Proteolytic activity	44
Sephadex G-50 Column Chromatography of Cerastes	46
cerastes Venom Fractions	
Determination of the Phospholipase A2 Activity of the	49
Venom Sub-fractions	
Determination of the Proteolytic Activity of the	49
Venom Fractions	
Sodium Dodecyl Sulphate Polyacrylamide Gel	53
Electrophoresis	
Determination of the 50 % Inhibitory Concentration	54
(IC_{50})	
Effect of IC ₅₀ @24h on the Growth of MCF-7 Cancer	64
Cells	
The Morphological studies	81
The Flow Cytometric Analyses	90
Cell Cycle Analysis	90
Determination of Caspase-3/7 concentration	95
Determination of Apoptosis and Necrosis Induction	99
Determination of the Median Lethal Dose (LD ₅₀)	105
Mortality Rates	108
Discussion	110

Summary & conclusion	134
References	139
Arabic summary	

LIST OF ABREVIATIONS

APS	Ammonium persulphate
Asp-49	Aspartic acid-49
A549	Human alveolar adenocarcinoma
Batrox LAAO	Bothrops atrox L-amino acid oxidase fraction
Bax	Bcl-2-associated X protein
Bcl-2	B-cell lymphoma 2
BD FACS	Becton Deckinson fluorescence-activated cell
	sorting
BIL	Bothrops leucurus lectin
Bis	Bis acrylamide
BnSP-6	Bothrops pauloensis phospholipase A2 fraction
Bp-LAAO	Bothrops pauloensis L-amino acid oxidase fraction
Brdu	Bromodeoxy uridine
CaCo 2	Colorectal adenocarcinoma
Caspase 3/7	Cysteine-aspartic proteases-3/7
CC-PLA ₂	Cerastes cerastes phospholipase A2
CDK 2	Cyclin dependent kinase 2
CDK 4	Cyclin dependent kinase 4
cIAP2	Baculoviral IAP repeat-containing protein 3
	inhibitor of apoptosis
Cis	Cisplatin
Colo 205	Colon adenocarcinoma
Cox-2	Cyclooxygenase-2
cPLA2	Cytosolic phospholipase A ₂
CR-LAAO	Calloselasma rhodostoma L- amino acid oxidase
CV	Crude venom
df	Degree of freedom
DMSO	Dimethyl sulphoxide
Doxo	Doxorubicin
DTT	Dithiothreitol
DU145	Prostate cancer cell line
EAT	Ehrlish ascites tumor cells
Eca-109	Oesophageal carcinoma
EL	Exposure level
E2	Estradiol

FITC	Fluorescein isothiocyanate
FL2A	Fluorescent light area
GNP	Gold nanoparticles
GNP-NKCT1	Gold nanoparticles conjugated to Naja kaouthia
	protein fraction
G0 phase	Gap 0 phase
G1 phase	Gap 1 phase
G2 phase	Gap 2 phase
HaCat	Immortal keratinocyte cell line
HEK	Human embryonic kidney cell line
HeLa cells	Cervical carcinoma
HepG2	Liver carcinoma
HUTU	Duodenum adenocarcinoma
H_2O_2	Hydrogen peroxide
IC ₅₀	The half maximal inhibitory concentration
iNOS	Inducible nitric oxide synthase
I.P.	Intraperitoneal
I.V.	Intravenous
LAAO cdt	L-amino acid oxdase from Crotalus durissus
	terrificus
LDH	Lactate dehydrogenase
LD_{50}	The median lethal dose
LL-24	Normal lung fibroblast
Lm LAAO	Lachesis muta L-amino acid oxidase fraction
LNCap	Androgen-sensitive human prostate
	adenocarcinoma
M	Mitosis
MCF-7	Michigan cancer foundation-7 (breast
	adenocarcinoma)
MCF-10	Normal breast epithelial cells
MDA-MB-231	Breast adenocarcinoma
MDA-MB-436	Breast adenocarcinoma
MKN-45	Stomach adenocarcinoma
MLO	Microvipera lebetina obtusa
mPANC96	Human pancreatic adenocarcinoma
MS	Mean of squares
MTS	3-(4,5-dimethylthiazol-2-yl)-5-(3-

	carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-		
	tetrazolium)		
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-		
	tetrazolium bromide		
NCI-H460	Lung cancer cells		
NFκβ	Nuclear factor kappa β		
NKCT1	Naja kaouthia protein fraction		
OH-LAAO	Ophiophagus hannah L-amino acid oxidase		
	fraction		
P	Percentage of change		
PBS	Phosphate buffer saline		
PC-3	Prostate cancer cells		
PC-12	Pheochromocytoma from rat adrenal gland		
PLA ₂	Phospholipase A ₂		
PRDX6	Peroxiredoxin 6		
p15	Tumor suppressor protein 15		
p17	HIV-1 matrix protein		
p21	Cyclin dependent kinase inhibitor		
p53	Tumor suppressor protein 53		
RKO	Colorectal adenocarcinoma		
RPMI	Roswell park memorial institute (a medium used		
	in cell culture)		
S phase	Synthesis phase		
SDS	Sodium dodecyl sulphate		
SDS-PAGE	Sodium dodecyl sulphate-polyacrylamide gel		
	electrophoresis		
SEM	Standard error of mean		
SK-BR-3	Breast cancer adenocarcinoma		
SS	Sum of squares		
SVT	Snake venom toxin		
S-180	Murine sarcoma cell line		
T	Exposure time		
TAM	Tamoxifen		
TβRII	Transforming growth factor beta receptor II		
T*EL	Interaction between Exposure time and Exposure		
	level		
TEMED	Tetramethylethylenediamine		

TGF-β	Transforming growth factor beta
TSGH-8301	Human bladder cancer cells
TSV-DM	Trimeresurus stejnegeri metalloproteinase fraction
U87MG	Human primary glioblastoma cell line
VERO	African green monkey kidney cell
XIAP	X-linked inhibitor of apoptosis protein
3T3 cells	Standard fibroblast cell line

LIST OF TABLES

TableNo.	Title	Page
(1)	Kruskal-Wallis distribution analysis to test the	58
	effect of exposure to crude venom and its	
	fractions F1, F2, F3 as well as their subfractions	
	F1A, F1B, F2A and F2B on the inhibitory	
	concentration percentages at 24 hours	
	(IC _S @24h) to the growth of MCF-7 cancer cells	
	in vitro.	
(2)	Kruskal-Wallis distribution analysis to test the	59
	effects of exposure to the cisplatin, doxorubicin	
	and crude venom on the inhibitory concentration	
	percentages at 24 hours ($IC_S@24h$) to the growth	
	of MCF-7 cancer cells in vitro.	
(3)	The inhibitory concentration percentages at 24	59
	hours ($IC_S@24h$) of the crude venom (CV),	
	cisplatin (Cis) and the doxorubicin (Doxo) to the	
	growth of MCF-7 cancer cells in vitro.	
(4)	The inhibitory concentration percentages at 24	60
	hours (IC _S @24h) of the crude venom (CV) and	
	its fractions (F1, F2 and F3) as well as the	
	subfractions (F1A, F1B, F2A and F2B) to the	
	growth of MCF-7 cancer cells in vitro.	
(5)	Table (5): The inhibitory concentration	62
	percentages at 24 hours (IC _S @24h) of cisplatin	