

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural Engineering

Analysis of Green House Systems Using Fiber Reinforced Polymer Cables

A Thesis submitted in partial fulfilment of the requirements of the Master of Science in Civil Engineering
(Structural Engineering)

by

Ahmad Mohammed Ashraf Mohammed AlaaElDin Eliwa ElGammal

Bachelor of Science in Civil Engineering (Structural Engineering) Faculty of Engineering, Ain-shams University, 2010

Supervised By
A. Prof. Dr. Bahaa Sharaf Tork
Dr. Mohammed Saafan Abdel Gawad

Cairo - (2018)

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Civil Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name

Signature

Ahmad Mohammed Ashraf Mohammed Alaa El-Din Eliwa ElGammal

Date:22 June 2018

Researcher Data

Name : Ahmad M.Ashraf Eliwa ElGammal

Date of birth : September-11-1988

Place of birth : Cairo, Egypt

Last academic degree : BSc in Civil Engineering
Field of specialization : Structural Department
University issued the degree : Ain-Shams University

Date of issued degree : July-2010

Current job : Senior Structural Engineer United for Consulting

Engineer

Table of Contents

Table of Contents	i
List of Tables	iv
List of Figures	v
Abstract	ix
Acknowledgments	xi
List of Abbreviations	xii
1. Introduction	1
1.1. Overview	1
1.2. Thesis Outline	2
2. Literature Review	3
2.1. Introduction	3
2.2. Historical Review of Steel Cable Structures	7
2.3. Development of FRP Cable Structures	11
2.4. Cable structures classifications and composition	18
2.4.1. Classifications of Cable roofs	18
2.4.2. Structural Cables	24
2.4.3. Cable characteristics	26
2.4.3.1. Cables Prestretching	26
2.4.3.2. Cable Elastic modulus	27
2.4.3.3. Cutting cables to length	28
2.4.4. Cable Connections	29
2.4.5. Cable end fittings	30
2.5. Summary	30
3. Methodology	33
3.1. Introduction	33
3.2. Assumptions	33
3.3. Verification	34
3.3.1. Example 1 "Two-way-net structure"	34
3.3.2. Example 2 "Single suspended cable"	35
3.3.3. Example 3 "Hyperbolic paraboloid cable net roof"	'37
3.3.4. Example 4 "cable truss 80m span"	38

4. Applications to Cable Trusses using Steel and FRP cables	.41
4.1. Introduction	.41
4.2. Cable Truss	.41
4.2.1. Geometry	.41
4.2.2. Cable Materials	.42
4.3. Computer Program Developed	.44
4.4. Parameters and results	.46
4.4.1. Varying the pretension as a function of yield strain	.46
4.4.2. Varying distributed loads	.49
4.4.3. Varying span-to-depth ratio with constant cable area	50
4.4.3.1. Span-to-depth (L/d) =7.5	.51
4.4.3.2. Span-to-depth (L/d) =10	.52
4.4.3.3. Span-to-depth (L/d) =12.5	.53
4.4.3.4. Span-to-depth (L/d) =15	.54
4.4.4. Varying span-to-sag ratio with the span-to-cam	ber
ratio	
4.4.4.1. Varying L/c ratio from 20 to 25 for each L/s ra	
4.4.4.2. Varying L/s ratio from 10 to 15 for $L/c = 25$	
4.4.5. The optimum spacing between hangers and number	
elements	
4.4.6. The effect of varying the tieback angle	
4.4.6.1. Tieback angle (θ) 30°	
4.4.6.2. Tieback angle (θ) 45°	
4.4.7.1 Tiebeek angle (0) 20°	
4.4.7.1. Tieback angle (θ) 30°	
4.4.7.2. Tieback angle (θ) 45°	
- · · ·	
4.5 Summary	
5. Comparative applications to greenhouse cable truss system	
5.1. Introduction	
5.2. Cable Truss 24m Span	.81

5.3. Cable Truss 48m Span	83
5.4. Cable Truss 80m Span	85
6. Conclusions and Future Work	88
6.1. Introduction	88
6.2. Conclusions	89
6.3. Suggestions for future work	91
7. Publications from Current Work	92
8. References	93
Appendix A. Program Developed Flowchart	98
A.1. Introduction	98
A.2. Flowcharts	98
A.2.1. Varying pretension as a function of yield strain	99
A.2.2. Varying distributed loads	100
A.2.3. Varying span-to-depth ratio with constant area	101
A.2.4. Varying span-to-sag ratio with span-to-camber r	
A.2.5. Optimum spacing between hangers and number	r of
elements	
A.2.6. The effect of varying tieback angle	
A.2.7. The effect of adding columns with tiebacksa	
A.3. Summary	106

List of Tables

Table 3-1: Displacements at Joint 1 (m)35
Table 3-2: Initial Properties of Cable36
Table 3-3: Displacement at Joint 236
Table 3-4: Comparison of Displacements with Published
Research (cm)
Table 3-5: Cable truss member properties39
Table 3-6: Member prestress force horizontal component39
Table 3-7: Maximum Vertical Displacements (cm)39
Table 3-8: Member Forces (tons) due to Case 1 (D)40
Table 3-9: Member Forces (tons) due to Case 2 (D + L left side)
40
Table 3-10: Member Forces (tons) due to Case 3 (D+L)40
Table 4-1: Mechanical properties of cable materials used in
current study42
Table 4-2: FS for different cable materials
Table 4-3: Optimum Span Divisions and Elements between
hangers for cable truss68
Table 5-1: Single span 24m cable truss member properties82
Table 5-2: Forces from single span 24m HS Steel cable truss83
Table 5-3: Forces from single span 48m HS CFRP cable truss83
Table 5-4: Single span 48m cable truss member properties84
Table 5-5: Forces from single span 48m HS Steel cable truss84
Table 5-6: Forces from single span 48m HS CFRP cable truss85
Table 5-7: Single span 80m cable truss member properties86
Table 5-8: Forces from single span 80m HS Steel cable truss86
Table 5-9: Forces from single span 80m HS CFRP cable truss87

List of Figures

Figure 2-1: Kew Palm House and Rose Garden4
Figure 2-2: Crystal Palace in New York5
Figure 2-3: The Climatron greenhouse at Missouri Botanical Gardens
Figure 2-4: Polyethylene sheets as roofing for Greenhouses6
Figure 2-5: The North Carolina State Fair Arena at Raleigh, USA
Figure 2-6: Ingalls Rink at Yale University9
Figure 2-7: The Sidney Myer Music Bowl in Kings Domain9
Figure 2-8: Yoyogi National Gymnasium in Tokyo (Tokyo Olympic swimming pool)10
Figure 2-9: Olympiapark in Munich, Germany10
Figure 2-10: The Ulenbergstrasse Bridge in Dusseldorf, Germany
Figure 2-11: Shinmiya bridge in Ishikawa Prefecture, Japan13
Figure 2-12: The Beddington Trail bridge in Calgary, Canada13
Figure 2-13: Bridge Street Bridge in Michigan, USA14
Figure 2-14: Buffalo Creel Bridge in West Virginia, U.S15
Figure 2-15: Aberfeldy Footbridge in Scotland, UK15
Figure 2-16: Herning footbridge, Denmark
Figure 2-17: GFRP Lleida Pedestrian Bridge, Spain16
Figure 2-18: Rhyl Harbour Bridge in Wales, UK16
Figure 2-19: Cable-supported roofs
Figure 2-20: Cable-suspended roofs
Figure 2-21: US Pavilion at the International Exposition in Osaka, Japan20
Figure 2-22: Different shapes of cable truss roofs21
Figure 2-23: The North Carolina State Fair Arena in Raleigh, Structural Schematic
Figure 2-24: Passenger Terminal at Dulles International Airport at Chantilly in Virginia, U.S23
Figure 2-25: Forum sports arena in Inglewood, California23

Figure 2-26: Tokyo Olympic Swimming Pool Stru	ıctural
Schematic	24
Figure 2-27: Stranding of a structural cable	25
Figure 2-28: Some cross-sections of structural cables (a)	_
strand (b) fully locked (c) wire rope	
Figure 2-29: Cyclic loading of cables to determine the	
modulus (PFEIFER, 2015)	
Figure 2-30: Cable Stress-Strain Curve (ASCE/SEI 19-10,	
Figure 2-31: Cable connections of the Mercedes Benz Are	ena in
Stuttgart, Germany (PFEIFER, 2015)	31
Figure 2-32: Cable end fittings (PFEIFER, 2015)	32
Figure 3-1: Two-way-net geometry	35
Figure 3-2: Single Cable Geometry	35
Figure 3-3: Cable Net Roof Geometry	37
Figure 3-4: Cable Truss Geometry	39
Figure 4-1: Biconcave Cable Truss	41
Figure 4-2: Generic Flowchart of the developed program	46
Figure 4-3: Biconcave cable truss geometric parameters	47
Figure 4-4: Forces in suspension cable	48
Figure 4-5: Forces in stabilizing cable	48
Figure 4-6: Cable truss mid-span deflection	48
Figure 4-7: Force in suspension cable for various distributed	
-	
Figure 4-8: Force in stabilizing cable for various distributed	
Figure 4-9: Midspan deflection for various distributed loads.	
Figure 4-10: Force in suspension cable for L/d =7.5	
Figure 4-11: Force in stabilizing cable for L/d =7.5	
Figure 4-12: Midspan deflection for L/d =7.5	
Figure 4-13: Force in suspension cable for L/d =10	
Figure 4-14: Force in stabilizing cable for L/d =10	
Figure 4-15: Midspan deflection for L/d =10	
Figure 4-16: Force in suspension cable for L/d =12.5	

Figure 4-17: Force in stabilizing cable for $L/d = 12.5$	53
Figure 4-18: Midspan deflection for L/d =12.5	54
Figure 4-19: Force in suspension cable for $L/d = 15$	54
Figure 4-20: Force in stabilizing cable for $L/d = 15$	54
Figure 4-21: Midspan deflection for L/d =15	55
Figure 4-22: Suspension cable area for $L/s=10$ and $L/c=20$	56
Figure 4-23: Stabilizing cable area for $L/s = 10$ and $L/c = 20$	56
Figure 4-24: Midspan deflection for $L/s = 10$ and $L/c = 20$	57
Figure 4-25: Suspension cable area for $L/s = 10$ and $L/c = 22.5$	5.57
Figure 4-26: Stabilizing cable area for $L/s = 10$ and $L/c = 22.5$	57
Figure 4-27: Midspan deflection for $L/s = 10$ and $L/c = 22.5$	58
Figure 4-28: Suspension cable area for $L/s=10$ and $L/c=25$	58
Figure 4-29: Stabilizing cable area for $L/s = 10$ and $L/c = 25$	58
Figure 4-30: Midspan deflection for $L/s = 10$ and $L/c = 25$	59
Figure 4-31: Suspension cable area for $L/s = 12.5$ and $L/c = 20$.59
Figure 4-32: Stabilizing cable area for $L/s = 12.5$ and $L/c = 20$	59
Figure 4-33: Midspan deflection for $L/s = 12.5$ and $L/c = 20$	60
Figure 4-34: Suspension cable area for $L/s = 12.5$ and $L/c = 2$	22.5
	60
Figure 4-35: Stabilizing cable area for $L/s = 12.5$ and $L/c = 2$	
Figure 4-36: Midspan deflection for $L/s = 12.5$ and $L/c = 22.5$	
Figure 4-37: Suspension cable area for $L/s = 12.5$ and $L/c = 25$	
Figure 4-38: Stabilizing cable area for $L/s = 12.5$ and $L/c = 25$	
Figure 4-39: Midspan deflection for $L/s = 12.5$ and $L/c = 25$	
Figure 4-40: Suspension cable area for $L/s = 15$ and $L/c = 20$	
Figure 4-41: Stabilizing cable area for $L/s = 15$ and $L/c = 20$	
Figure 4-42: Midspan deflection for $L/s = 15$ and $L/c = 20$	
Figure 4-43: Suspension cable area for $L/s = 15$ and $L/c = 22.5$.63
Figure 4-44: Stabilizing cable area for $L/s=15$ and $L/c=22.5$	63
Figure 4-45: Midspan deflection for $L/s = 15$ and $L/c = 22.5$	64
Figure 4-46: Suspension cable area for $L/s=15$ and $L/c=25$	64
Figure 4-47: Stabilizing cable area for $L/s=15$ and $L/c=25$	64

Figure 4-48: Midspan deflection for $L/s = 15$ and $L/c = 25$ 65
Figure 4-49: Geometry of cable truss with tiebacks
Figure 4-50: Forces in suspension cable for tieback angle $30^{\circ}69$
Figure 4-51: Forces in stabilizing cable for tieback angle 30°69
Figure 4-52: Forces in upper tieback cable for tieback angle $30^{\circ}69$
Figure 4-53: Forces in lower tieback cable for tieback angle $30^{\circ}70$
Figure 4-54: Forces in suspension cable for tieback angle 45°70
Figure 4-55: Forces in stabilizing cable for tieback angle 45° 70
Figure 4-56: Forces in upper tieback cable for tieback angle $45^{\circ}71$
Figure 4-57: Forces in lower tieback cable for tieback angle $45^{\circ}71$
Figure 4-58: Forces in suspension cable for tieback angle 60° 71
Figure 4-59: Forces in stabilizing cable for tieback angle 60° 72
Figure 4-60: Forces in upper tieback cable for tieback angle $60^{\circ}72$
Figure 4-61: Forces in lower tieback cable for tieback angle $60^{\circ}72$
Figure 4-62: Geometry of cable truss with columns and tiebacks
74
Figure 4-63: Forces in suspension cable for $\theta = 30^{\circ}$ with column
Figure 4-64: Forces in stabilizing cable for $\theta = 30^{\circ}$ with column75
Figure 4-65: Forces in upper tieback cable $\theta = 30^{\circ}$ with column 75
Figure 4-66: Forces in lower tieback cable $\theta = 30^{\circ}$ with column 76
Figure 4-67: Forces in suspension cable for $\theta = 45^{\circ}$ with column
Figure 4-68: Forces in stabilizing cable for $\theta = 45^{\circ}$ with column76
Figure 4-69: Forces in upper tieback cable $\theta = 45^{\circ}$ with column 77
Figure 4-70: Forces in lower tieback cable θ =45° with column .77
Figure 4-71: Forces in suspension cable for $\theta = 60^{\circ}$ with column
Figure 4-72: Forces in stabilizing cable for $\theta = 60^{\circ}$ with column78
Figure 4-73: Forces in upper tieback cable $\theta = 60^{\circ}$ with column 78
Figure 4-74: Forces in lower tieback cable $\theta = 60^{\circ}$ with column 78
Figure 5-1: Single span cable truss cases of loading82
Figure 5-2: Single span 48m cable truss cases of loading84
Figure 5-3: Single Span 80m cable truss cases of loading85

Abstract

Ahmad Mohammed Ashraf Mohammed Alaa El-Din Eliwa ElGammal "Analysis of Green House Using Fiber Reinforced Polymer Cables", Master of Science dissertation, Ain Shams University, 2016.

This thesis presents a biconcave cable truss as a roofing system for green houses by using non-traditional cable materials. Not only traditional steel cables were used but also FRP cables namely: high-strength carbon FRP (CFRP), hybrid FRP cables such as basalt mixed with carbon with two different volume proportions 25% and 50% of carbon fiber called B/CFRP 25% and B/CFRP 50%, respectively. Also, another newly developed hybrid FRP cable formed by the hybridization of basalt and steel cables together with two volume proportions 20% and 30% called B/SFRP 20% and B/SFRP 30%, respectively. These hybrid cables have been tested for large scale cable stayed bridges and were deemed appropriate. Up to the author's knowledge using FRP cables in cable trusses as roofing structure has never been studied.

Several parameters have been tested in this study to get a better understanding of the cable truss behavior. The output of each parameter was added to the next as an input. An excel based program was developed that linked excel with SAP2000 FE model this helped reduce the time needed for analysis and thus simplifying creating large number of analysis models and storing the results.

The parameters studied here are the effect of varying: the cable pretension as a function of yield strain, distributed loads (w), span-to-depth ratio with constant cable area, span-to-sag (L/s) ratio with span-to-camber (L/c) ratio, the optimum spacing between hangers and the number of elements between hangers, tieback angle with roller supports used instead of columns and finally tieback angle with vertical columns provided.

The major conclusions drawn from this study are as follows: (1) Cable truss stiffness is directly proportional to the pretension. (2) Cable truss stiffness is inversely proportional to the increase of w and (L/s). (3) Cable truss stiffness is inversely proportional to the