# Pharmacological study of therapeutic outcomes of carvedilol and co enzyme Q10 combination in isoprenaline-induced myocardial infarction in rats

Thesis presented by

## Nora Mohamed El Shorbagi

M.Sc., Al-Azhar University (2011)
Marketing Manager, October Pharma for pharmaceutical industries

Submitted for partial fulfillment of PhD degree in Pharmaceutical Sciences (Pharmacology and Toxicology).

Under the supervision of

# Dr. Ebtehal El Demerdash Zaki

Professor and Head of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University.

# Dr. Ragia Ali Mahmoud Taha

Professor of Pharmacology and Toxicology and former dean of Faculty of Pharmacy (Girls), Al-Azhar University.

## Dr. Azza Sayed Awad

Professor Pharmacology and Toxicology Faculty of Pharmacy, Al-Azhar University.

### Dr. Samar Saad El Din Azab

Assistant professor of Pharmacology and Toxicology Faculty of Pharmacy Ain Shams University

## Dr. Wesam El-Bakly

Assistant professor of Pharmacology, Faculty of Medicine, Ain Shams University

Faculty of Pharmacy-Ain Shams University (2018)



# <u>Acknowledgements</u>

First of all, no words can express my deep thanks to Allah; who without his help; this work would have never been accomplished and may this work add to our good deeds to gain his kind mercifulness.

Most heartfelt thanks are due to **Prof. Ebtehal El Demerdash**, Professor and head of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, for her valuable supervision, constructive discussions, indispensible advice and crucial contribution in point suggestion. Her wide knowledge and her logical way of thinking have been of great value for me.

I would like to thank **Prof. Ragia Taha**, professor and former dean of Faculty of Pharmacy (Girls), Al-Azhar University. I do appreciate her effort and valuable time she sacrificed to finish this work

My sincere thanks and my deep feeling of gratitude to **Prof. Azza Awad**, professor of Pharmacology and Toxicology, and Vice dean of faculty of Pharmacy Ahram Canadian University, for her supervision and crucial contribution in point suggestion. In fact, she was more than a supervisor, she never stopped supporting and encouraging me. Her precious advices were always pushing me forward.

I would like to thank Ass. Prof. Samar Azab Assistant professor of Pharmacology and Toxicology, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her continuous help in the work.

I wish to express my warm and sincere thanks to Ass. Prof. Wesam M. El-Bakly, Assistant professor of Pharmacology, Faculty of Medicine, Ain Shams University, for her enthusiastic help and guidance leading to completion of this thesis. I do appreciate her effort and valuable time she sacrificed to me. I thank her for all help throughout all stages of this work.

My deep and sincere love is devoted to my beloved husband and my soul Ahmed, Fatma and Mohamed, to whom words are not enough to describe their care and support. They provided me with the suitable atmosphere to work.

My profound gratefulness to my **father** and my **mother**. They continuously prayed to Almighty Allah for my success.

Finally, I am very thankful to <u>**Dr.Ahmed Zaghloul**</u>, CEO of October Pharma for his endless support he never stopped supporting and encouraging me. He have been a great source of motivation and inspiration.

To all of them I dedicate this thesis.

Nora Mohamed El Shorbagi

# ABSTRACT

#### **Abstract:**

The present study was designed to elucidate the potential pharmacological outcomes of carvedilol combination with co enzyme Q10 in isoprenaline-induced myocardial infarction in rats. **Method:** Carvedilol and/or co enzyme Q10 was given once daily for 14 consecutive days at doses of 10 mg/kg orally after administration of two doses of ISP (85 mg/kg; s.c.). Results: ISP induced significant myocardial damage in rats, which was characterized by significant tachycardia, ECG changes, increased absolute and relative heart weight, increased serum CK-MB, myofibrillar disarrangement and several histological changes. ISP induced lipid profile alteration expressed as elevation in triglyceride, cholesterol and LDL with reduction in HDL. These lipid alterations were modified by treatment with Carvedilol and/or co enzyme Q10. As indicators of oxidative stress, ISP increased cardiac lipid peroxide levels and decreased the levels of cardiac GSH and serum total antioxidant capacity. Moreover, ISP increased the expression of TNF-α and NF-κB which further promote apoptotic cell death and increases caspases 3 and 9 activities. Adding Carvedilol and/or co enzyme Q10 treatment ameliorated all parameters the ECG changes and normalized CK-MB level additional improvement in all parameters as compared to both alone therapy. Conclusion: The present study provides the evidence that carvedilol and co enzyme Q10 treatment could reduce the myocardial injury and improves cardiac function in ISP-induced MI. These effects are mostly via its hypolipidemic, antioxidant, and anti-inflammatory effects that suppress caspase mediated apoptotic pathway. Co enzyme Q10 has additional effects if combined with carvedilol.

**Keywords:** Carvedilol; co enzyme Q10; isoproterenol; myocardial infarction; oxidative stress; apoptosis.

# <u>Contents</u>

| Subject                                                                                                                                                                                                                                                                                                                                                | Page NO.                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 1- List of abbreviations                                                                                                                                                                                                                                                                                                                               | i                                                     |
| 2- List of tables                                                                                                                                                                                                                                                                                                                                      | viii                                                  |
| 3- List of figures                                                                                                                                                                                                                                                                                                                                     | ix                                                    |
| 4- Review of literature                                                                                                                                                                                                                                                                                                                                | 1                                                     |
| - Myocardial Infarction                                                                                                                                                                                                                                                                                                                                |                                                       |
| <ul> <li>Definition</li> <li>Prevalence and incidence</li> <li>Etiology and risk factors</li> <li>Pathogenesis of MI</li> <li>The adaptive response of the heart</li> <li>Clinical presentation and Classification</li> <li>Mortality and complications</li> <li>Medical therapy</li> </ul> Animal Models of MI <ul> <li>Surgical procedure</li> </ul> | 1<br>1<br>2<br>5<br>13<br>16<br>18<br>19<br><b>21</b> |
| <ul> <li>Pharmacologically induced Model</li> <li>-Carvedilol <ul> <li>Chemistry</li> <li>Pharmacokinetic</li> <li>Pharmacodynamic</li> <li>Safety and adverse effects</li> </ul> </li> </ul>                                                                                                                                                          | 22<br>25<br>25<br>26<br>27<br>31                      |

| -Co-enzyme Q10             | 33  |
|----------------------------|-----|
| - Chemistry                | 33  |
| - Pharmacokinetic          | 33  |
| - Pharmacodynamic          | 35  |
| 5- Aim of the work         | 38  |
| 6- Material and Methods    | 40  |
| 7-Results                  | 86  |
| 8- Discussion              | 134 |
| 9- Summary and Conclusions | 146 |
| 10- References             | 148 |
| 11- Arabic summary         |     |
|                            |     |

# List of Abbreviations

ACCF American College of Cardiology Foundation

ACS Acute Coronary Syndromes

ADP Adenosine diphosphate

AHA American Heart Association

ALT alanine aminotransferase

AMI Acute myocardial infarction

Apaf-1 apoptosis protease activation factor-1

**ATP** Adenosine triphosphate

Bcl-2 B-cell lymphoma 2

Bcl-xl B-cell lymphoma-extra large

bFGF Fibroblast growth factor basic

BMI Body mass index

**CAT** Catalase

CHD Coronary heart disease

CHF Congestive heart failure

c-IAP-1 Cellular inhibitor of apoptosis protein 1

**CK-MB** Creatine kinase MB

COX-1 Cyclooxygenase-1

**CRP** C-reactive protein

cTnT Cardiac troponin T

CVD Cardiovascular diseases

i

#### LIST OF ABREVIATIONS

DMSO Dimethyl sulphoxide

DNA Deoxyribonucleic acid

**DOX** Doxorubicin

DTI Direct thrombin inhibitors

DTNB 5,5' dithiobis-2-nitrobenzoic acid

**ECG** Electrocardiography

EDTA Ethylene-diamine tetraacytic acid

EM Electron microscope

ESC European Society of Cardiology

G6PDH Glucose-6-phosphate Dehydrogenase

GABA Gamma-aminobutyric acid

**GP** Glycoprotein

**GSH** Reduced glutathione

H & E Hematoxylin and Eosin

HDL High-density lipoprotein

HF Heart failure

HHcy Hyper-homocysteinemia

HRP Horseradish Peroxidase

**IUPAC** International Union of Pure and Applied Chemistry

i.p. Intraperitoneal

I/R Ischemic Reperfusion

IL interleukin

iNOS Induced Nitric oxide

**ISP** Isoprenaline

IKB inhibitor of KB proteins

LAD Left anterior descending coronary artery

LDH lactate dehydrogenase

LDL Low-density lipoprotein

LOX-1 Lectin-like Ox-LDL receptor-1

LPA lipoprotein -A

LPL lipoprotein lipase

LTC4 leukotrienes C4

LV Left ventricular

LWMH low molecular weight heparin

MDA Malondialdehyde

MI Myocardial infarction

MPO Myeloperoxidase

MMP 1 Matrix metalloproteinase 1

MMP9 Matrix metalloproteinase 9

NADH Nicotinamide adenine dinucleotide hydrogen

NADP Nicotinamide adenine dinucleotide phosphate

NF-kB Nuclear Factor kappa-B

NO Nitric oxide

**NSTEMI** Non-ST-Elevation myocardial infarction

NYHA New York Heart Association

Ox-LDLs Oxidized Low-density lipoprotein

PDGF Platelet derived growth factor

PGE2 prostaglandin E2