Evaluation of the diagnostic and therapeutic roles of non-coding RNA and Cell proliferation related gene association in Hepatocellular carcinoma

Thesis

Submitted for Partial Fulfillment for the Requirement of M.D. Degree in Basic Science (Medical Biochemistry)

Ву

Manar Yehia Ahmed

Assistant lecturer of Medical Biochemistry and Molecular Biology
M.B.B.Ch., M.Sc. Biochemistry
Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. / Mofida Mohammed Salah

Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University

Prof. Dr. / Samar Kamal Kassim

Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University

Dr. / Fatma Abd Elkarim Abu-Zahra

Fellow Molecular Biology & Tissue Culture Medical Research Center, Ain Shams University

Dr. / Wael Mohamed Alayat

Lecturer of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University

Dr. / Dalia Abdel-Wahab Mohamed

Lecturer of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University

> Ain Shams University Faculty of medicine 2018

Acknowledgment

First of all, I would like to express my deep gratitude to ALLAH, for his care and generosity throughout my life.

I would like to express my sincere appreciation to Prof. Dr. Mofida Mohammed Salah and Prof Dr. Samar Kamal Kassim, Professors of Medical Biochemistry and Molecular Biology, for their keen supervision and guidance and thier overwhelming support that has been of great help throughout this work.

I would also like to express my great thanks to **Dr. Wael**Mohamed Alayat and **Dr. Dalia Abdal-Wahab Mohamed,**Lecturers of Medical Biochemistry and Molecular Biology for the great efforts they have done in this work.

I wish also to express my appreciation and gratefulness to **Prof Dr. Amr Abdelaal** professor of Hepato-Pancreato-Biliary Surgery and liver transplantation, Ain Shams University, for his assistance, and help in completing this work.

My appreciation is expressed to **Dr. Fatma Abd Elkarim Abo Zahra,** Fellow Molecular Biology & Tissue Culture Medical Research Center, for her effort during completing this work.

I am grateful to **Dr Asmaa Abd El Monem Abozaid** Lecturer of Histology, Faculty of Medicine, Ain Shams University, for her assistance, and help in completing this work.

Finally my deepest thanks for my parents, my husband, my daughters; for their help, support and tolerance of my absence.

List of Contents

\boldsymbol{P}	age	N	o.
_	~		-

Acknowledgment	
• List of Abbreviations	I
• List of tables	V
• List of figures	VIII
• Introduction	1
Aim of the work	5
Review of literature:	6
Hepatocellular carcinoma	6
Minichromosome maintainance protein 2	21
Non coding RNA	32
RNA interferance	46
Subjects and Methods	54
• Results	98
• Discussion	124
• Summary	134
• Conclusion	137
• Recommendations	138
• References	139
Arabic Summary	—

LIST OF ABBREVIATION

3′-UTR	3' untranslated region
AASLD	American Association for the Study of Liver
Diseases	
AFB1	Aflatoxin B1
AFP	Alpha-1 fetoprotein
AFP-L3	Lectin lens culinaris agglutinin-reactive AFP
-	
AJCC	American Joint Committee on cancer
AST	
AUC	
BMP7	Bone Morphogenetic Protein 7 gene
	Cyclin D1
Cdc6	
Cdc7	
cDNA	
CDK	Cyclin Dependant Kinase
	romatin licensing and DNA replication factor 1
	Competing endogenous RNAs
circRNA	
CLIP	
CMP	
CT	Cycle Threshold, Computed tomography
DDK	
	Diethylpyrocarbonate
DMEM	Dulbecco's Modified Eagle's Medium
DNA	Deoxy Ribonucleic Acid
	Deoxy Nucleoside Triphosphate
dUTP	Deoxy Uridine Triphosphate
EDTA	Ethylenediaminetetraacetic acid

EGFP	Enhanced green fluorescent protein
eIF4E	eukaryotic translation initiation factor 4E
eIF6	eukaryotic translation initiation factor 6
eIF4G	eukaryotic translation initiation factor 4G
FBS	Fetal bovine serum
FDA	Food and Drug Administration
FBS	Fetal bovine serum
FDA	Food and Drug Administration
FGF19	Fibroblast Growth Factor 19
	Forkhead transcription factor
	Gram
GGT mRNA	Gamma-glutamyl transferase mRNA
GP73	
HBsAg	
HBV	
HCC	Hepatocelluar Carcinoma
HCV	Hepatitis C virus
HGF	Hepatocyte growth factor
HiBECs	human intrahepatic biliary epithelial cells
HULC	Highly up-regulated in liver cancer
	Interferon
IL6	interleukin 6
	Insulin-like growth factor II
Imp8	Importin 8
INR	international normalized ratio
KSP	kinesin spindle protein
let-7	Lethal 7
lin-4	Lineage defective 4
LncRNA	Long noncoding RNA
LTx	Liver transplantation
MAPK	Mitogen-activated protein kinase

MCM	Minichromosome maintenance family
miRNP	microRNA ribonucleoprotein complex
miR-34a	Micro Ribonucleic acid-34a
miRNAs	Micro ribonucleic acid
MREs	miRNA response elements
MRI	
mRNA	Messenger RNA
MTS	3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymeth	noxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium,	inner salt
MyD88	. Myeloid differentiation primary response 88
NADH	Nicotinamide adenine dinucleotide
NADHP	Nicotinamide adenine dinucleotide phosphate
NAFLD	Nonalcoholic fatty liver disease
NASH	Non-alcoholic steatohepatitis
ncRNA Noi	n-coding RNA, Non coding Ribonucleic Acid
NPV	
OCCMPro	otein complex composed of ORC, Cdc6, Cdt1
and MCM	
ORC	Origin recognition complex
PABP	poly (A)-binding protein
P bodies	mRNA processing bodies
PES	phenazine ethosulfate
piRNA	Piwi-interacting Ribonucleic Acid
PIVKA-II	Protein Induced by Vitamin K antagonist-II
PKN3	Protein kinase N3
PLK1	polo-like kinase 1
PPV	Positive Predictive Value
primiRs	primary miRNA transcripts
RISC	RNA-induced silencing complex

RNAi	RNA interference
ROC	A. Receiver Operating Characteristics curve
RRM2	
rRNA	Ribosomal RNA
RT	
RT-PCR	.Reverse Transcription/ Real time Polymerase
Chain Reac	tion
S. cerevisiae.	Saccharomyces cerevisiae
SCCA	Squamous cell carcinoma antigen
SD	Standard Deviation, See
shRNA	Short-hairpin Ribonucleic Acid
siRNA	Small interfering Ribonucleic Acid, Small
interfering l	Ribonucleic Acid
SPSS	Statistical Package for the Social Sciences
TACE	Trans-arterial chemoembolization
TGF-β1	Transforming growth factor –β1
T_m	Melting temperature
TNM	Tumor-node-metastasis
tRNA	Transfer RNA
US	Ultrasonography
VEGF	Vascular endothelial growth factor
ΔCT	
μg/ml	Microgram/deciliter

LIST OF TABLES

Table 1: TNM Staging System13
Table 2:Stage Groupings of TNM Staging System14
Table 3: Child-Pugh Classification14
Table 4: Cancer of the Liver Italian Program (CLIP) staging system
Table 5: Genomic DNA elimination reaction:65
Table 6: Reverse-transcription master mix:66
Table 7: Reverse Transcription Reaction Components 68
Table 8: Reaction Mix for QuantiTect SYBR Green PCR Kit71
Table 9: Cycling Conditions of QuantiTect SYBR Green PCR
Table 10: Reaction mix for miScript SYBR Green PCR Kit
Table 11: Cycling Conditions for miScript SYBR Green PCR:
Table 12: A standard concentrations of viable HepG2 cell suspension were prepared in 100µl of culture medium
Table 13: Age and Sex in Different Groups of the Study. 98
Table 14: The Different Laboratory Parameters in the Different Groups of the Study99

Table	15: Clinical characteristics of patients with hepatocellular carcinoma included in the present study
Table	16: Relative Quantification of Liver Tissue MCM2 mRNA expression among the different groups of the Study
Table	17: Performance characteristics of liver tissue MCM2 mRNA levels
Table	18: Relative Expression of Liver Tissue miR-34a-5p among the Different Groups of the study104
Table	19: AUC, Sensitivity, Specificity, PPV, NPP, and Accuracy of liver tissue miR-34a-5p106
Table	20: Relative Expression of Liver Tissue lncRNA-RP11-583F2.5 among the Different Groups of the Study:
Table	21: AUC, Sensitivity, Specificity, PPV, NPP, Accuracy of liver tissue lncRNA-RP11-583F2.5.109
Table	22: Correlation between the RQs of MCM2 mRNA, miR-34a-5p and lncRNA-RP11-583F2.5 among all the Studied Groups
Table	23: Number of viable HepG2 cells and The Percentage of HepG2 cells viability counted and detected by Trypan Blue exclusion test in Untreated HepG2 Cells and Mock HepG2 cells
Table	24: Number of viable HepG2 cells, and The Percentage of HepG2 cells viability counted and detected by Trypan Blue exclusion test before and after Transfection

Table	25: Number of HepG2 Viable cells detected by CellTiter 96® AQ _{ueous} One Solution Cell Proliferation Assay (MTS)in Untreated HepG2 Cells and Mock HepG2 cells:
Table	26: Number of HepG2 Viable cells detected by CellTiter 96® AQ _{ueous} One Solution Cell Proliferation Assay (MTS) before and after transfection
Table	27: Relative Expression of MCM2 mRNA in Untreated HepG2 Cells and Mock HepG2 Cells118
Table	28:Relative Expression of MCM2 mRNA Gene in HepG2 Cell Line before and after Transfection with miR-34a-5p Mimic and Inhibitor
Table	29:Relative Expression of miR-34a-5p in Untreated HepG2 Cells and Mock HepG2 Cell Line miR-34a-5p Mimic and Inhibitor
Table	30: Relative Expression of miRNA34a-5p in HepG2 Cell Line before and after Transfection with miR- 34a-5p Mimic and Inhibitor
Table	31: Correlation between RQ of MCM2 mRNA and RQ of miR-34a-5p before and after hepG2 Cell Line Transfection with miR-34a-5p Mimic and inhibitor

LIST OF FIGURES

Figure 1: Structure of the Mcm2–7 complex	23
Figure 2: Mcm2-7 loads onto DNA at replication during G1 and unwinds DNA ahead of repolymerases.	plicative
Figure 3: miRNAs as oncogenes, or tumor su genes.	
Figure 4: Location of miR-34 family on chromosor	nes36
Figure 5: Biogenesis of miRNA 34	37
Figure 6: Role miRNA 34 in cancer	42
Figure 7: Snapshot shows the expression of MCM2 hepatocellular carcinoma	_
Figure 8: Snapshot shows search for lncRNAs action MCM2 gene in hepatocellular carcinoma	_
Figure 9: Snapshot shows resulting lnRNAs for the mRNA.	
Figure 10: Snapshot shows search for miRNA t lncRNA RP11-583F2.5	_
Figure 11: Snapshot of GeneCards Database sho involvement of MCM2 gene in liver (Hepat Carcinoma).	ocellular
Figure 12: Snapshot of GeneCards Database sho expression of hsa-miR-34a-5p in liver	_
Figure 13: Poly A tailing based RT-PCR	67

Figure 14: Melting curves for of miR-34a-5p, RNU6, MCM2, lncRNA-RP11-583F2.5 and β actin used in the study
Figure 15: A representative real time PCR amplification plot of miR-34a-5p, RNU6, MCM2, lncRNA-RP11-583F2.5 and β actin used in the study79
Figure 16: The hemocytometer
Figure 17: Structures of MTS tetrazolium and its formazan product
Figure 18: CellTiter 96® AQueous One Solution Cell Proliferation Standard curve for HepG294
Figure 19: Boxplot showing the RQs of liver tissue MCM2 mRNA in Different Groups of the Study102
Figure 20: ROC curve of MCM2 mRNA expression levels.
Figure 21: RQ of liver tissue miR-34a-5p in Different Groups of the Study
Figure 22: ROC curve of miR-34a-5p expression levels
Figure 23: RQ of lncRNA-RP11-583F2.5 in Different Groups of the Study
Figure 24: ROC curve of lncRNA-RP11-583F2.5 expression levels
Figure 25: Correlation between RQs of MCM2 mRNA-and miR-34a-5p among all the Studied Groups111

Figure 26: Correlation between RQs of miR-34a-5p and lncRNA-RP11-583F2.5 among all the Studied Groups.
Figure 27: Number of viable HepG2 cells counted by Trypan blue exclusion test in untreated HepG2 cells and Mock group
Figure 28: Number of viable HepG2 cells counted by Trypan blue exclusion test before and after transfection.
Figure 29: Number of HepG2 Viable cells detected by CellTiter 96® AQ _{ueous} One Solution Cell Proliferation Assay (MTS)in Untreated HepG2 Cells and Mock HepG2 cells
Figure 30: HepG2 cells by Inverted Microscope116
Figure 31: Number of HepG2 Viable cells detected by CellTiter 96® AQ _{ueous} One Solution Cell Proliferation Assay (MTS) before and after transfection.
Figure 32: RQs of MCM mRNA 2 in untreated hepG2 group versus mock group
Figure 33: RQ of mRNA MCM2 gene in hepG2 cell line before and after transfection
Figure 34:RQ of miR-34a-5p gene in untreated hepG2 group versus mock group
Figure 35: RQ of miRNA34a-5p in hepG2 cell line before and after transfection

Figure 36: Correlation between MCM2	2 RQ and miR-34a-
5p RQ before and after hepG2 c	cell line transfection
with mimic	123