

Study of the Effect of Nano- Materials on developing Properties of Concrete

By

Eng. Omar Mohmed Fathi Mohamed Mahmoud Eid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science

In

Advanced Materials and Nano-Materials

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

Study of the Effect of Nano-Materials on developing Properties of Concrete

By

Eng. Omar Mohmed Fathi Mohamed Mahmoud Eid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science

In

Advanced Materials and Nano-Materials

Supervisors

Prof. Dr. Osama Abd El Ghafour Hodhod

Professor of Properties and Strength of Materials-Structural Department

Faculty of Engineering, Cairo University

Prof. Dr. El Saaid Ibrahim Zaki

Professor of Properties and Strength of Materials

Housing and Building National Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2018

STUDY OF THE EFFECT OF NANO-MATERIALS ON DEVELOPING PROPERTIES OF CONCRETE

By **Eng. Omar Mohmed Fathi Mohamed Mahmoud Eid**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

Advanced Materials and Nano-Materials

Approved by the Examining Committee	
Prof. Dr. Osama Abd El Ghafour Hodhod (Thesis Main Advisor)	
Prof. Dr. El Saaid Ibrahim Zaki (Advisor) Housing and Building National Research Center	
Prof. Dr. Ahmed Mahmoud Maher (Internal Examiner)	
Prof. Dr. Samir Saad Ibrahim Nassar (External Examiner) Housing and Building National Resea	 rch Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 Engineer: Omar Mohamed Fathi Mohamed Mahmoud Eid

Date of Birth: 29 /03 / 1985

Nationality: Egyptian

E-mail:omareid645@gmail.com

Phone: 01002020934

Address: 14 Hassan El-Emam Street, Nacr City, Cairo

Registration Date: 1 /10/2013 **Awarding Date:** / /2018

Degree: Master **Department:** Advanced Materials and Nano- Materials

Supervisors: Prof. Dr. Osama Abd EL Ghafour Hodhohd (Main Advisor)

Prof. Dr El Saaid Ibrahim Zaki (Advisor)

Housing and Building National Reserch Center

Examiners: Prof. Dr. Osama Abd EL Ghafour Hodhohd (Examiner)

Prof. Dr. El Saaid Ibrahim Zaki (Examiner)

Prof. Dr. Ahmed Mahmoud Maher (Internal Examiner)
Prof. Dr. Samir Saad Ibrahim Nassar (External Examiner)

Housing and Building National Reserch Center

Title of Thesis: STUDY OF THE EFFECT OF NANO-MATERIALS ON DEVELOPMENT PROPERTIES OF CONCRETE

Key Words: Nano materials, Nano Calcium Carbonate, Nano Kaolin, Permeability, Scanning

Electron Microscope analysis

Summary:

This thesis aims to substitute cement mixtures using Nano particles of two different materials Nano Kaoline (NK) and Nano Calcium Carbonate NCaCO₃ to study its physical, mechanical and permeability performance and to provide a highly performance concrete mixture with feasibly economic cost.

The study is concerned in the synthesizing of (NK) and (NCaCO₃) particles in the laboratory by applying simple techniques. Both Nano Materials are obtained by the calcination of Kaolinite and Calcium Carbonate and prepared by thermal activation at 800° C for 2 hours. The morphology of the synthesized NK and NCaCO₃ are analyzed using Transmission Electron Microscopy (TEM), and the minerals are identified using X-ray diffraction Florence (XRDF). Concrete specimens were prepared in the laboratory and the results were compared against control mix. The microstructure was characterized by means of Scanning Electron Microscope analysis (SEM). According to experiments, the optimum partial replacement of NK and NCaCO₃ is 7% and 1% respectively which increases both compressive and splitting tensile strength and enhances Coefficient of permeability. The NK gives better results in the ratio (splitting strength/compression tensile strength) than NCaCO₃, while NCaCO₃ achieves better results in the coefficient of Permeability. From the study, it is recommended to add 1% NCaCO₃ for best enhancement of concrete besides its low cost.

ACKNOWLEDGEMENT

First of all, I would like to thank God for His guidance and care throughout my life and for his endless support to overcome any obstacles and difficulties that I faced during this research.

I would like to express my deepest gratitude to my supervisor **Prof. Dr.Osama Hodhod** Professor of properties of Material, Faculty of Engineering- Cairo University for his guidance, advices, encouraging, insightful discussions, knowledge learning he gave me. Also, I would like to express my deepest gratitude to my supervisor **Prof. Dr. El-Saaid Ibrahim Zaki Eldeen** Professor of Strength and Testing of Materials in Housing and Building National Research Center for his guidance, patience, encouraging, and valuable assistance during all stages of this research.

I would like to thank **Cairo University**, Faculty of Engineering for providing Laboratories and Library facilities.

I would also to express my gratitude towards **Prof. Dr. Niveen Maousof** for encouraging me to join this study (May her soul rest in peace).

I am grateful to **Prof. Dr. Samir Saad Ibrahim**, Head of Electro Mechanical Institute, HBRC for supporting me every step of the way.

Thanks to **Eng. Alla Eldean Morsi** Director of Quality Control in Lokma Factory.

I wish to express my love and gratitude to my beloved family for their support and encouragement through the duration of my studies. Thanks to my siblings for always being there for me whenever needed. Thanks to my youngest sister **Eng. Mariam Eid** for her help during this study. A special thanks to **Prof. Dr. Fathi Eid** (may God bless his soul) **Dr. Samia Emera** my amazing Parents for their precious advice on both academic and personal level throughout my life.

DEDICATION

To my amazing Dad **Prof. Dr. Fathi Eid** (may his soul rest in peace) as he has been always encouraging me to start my master.

To my wonderful Mother Dr. Samia Emera for her patience, encourage and always waiting for this moment with anxiety.

Table of contents

Title
Acknowledgment
Dedication
List of contents
List of tables
List of figures.
List of abbreviations
Abstract
CHAPTER (I): INTRODUCTION
1.1. Background.
1.2. Definition of Nanotechnology.
1.3. Importance of Nanotechnology in Civil Engineering
1.4. Research Objectives.
1.5. Research Scope
1.7. Research Outlines
CHAPTER (2): LITERATURE REVIEW
2.1. Introduction.
2.2. Nanotechnology and concrete: Definitions
2.2.1. Concrete: a complex, nano structured material
2.2.2. Definition of Nanotechnology in concrete.
2.3. Definition of Nanomaterial
2.4. Definition of Nanoparticles
2.5. Nano particles Preparation
2.6. Pozzolanic Materials.
2.6.1. Pozzolanic Materials Classification.
2.6.2. Pozzolanic Material in Cement concrete.
2.7 Supplementary Cementing Materials (SCMs)

2.8. kaoline.	9
2.8.1. Introduction.	9
2.8.2. Kaolinite mineral.	10
2.8.2.1. Structure and composites of kaolinite mineral	10
2.8.2.2. The gensis of kaoline minerals	10
2.8.2.3. The mining and processing of kaoline minerals	11
2.8.2.4. Nano Metakaoline Production	11
2.8.2.5. Properties of Metakaoline	12
2.8.2.6. kaoline Uses	12
2.8.2.7. Advantages of kaoline	12
2.9. The effect of Nano Clay on Concrete	12
2.10. Nano Calcium Carbonate (NCaCO ₃)	15
2.11. The Effect of Nano CaCO ₃ on Concrete.	16
CHAPTER (3): EXPERMENTAL WORK	
3.1. Introduction.	19
3.2. Materials.	19
3.2.1. Portland Cement.	19
3.2.2. Fine Aggregate.	20
3.2.3. Aggregates	22
3.2.4. Water	23
3.2.5. Chemical Admixture	23
3.2.6. Silica Fume.	24
3.2.7. Kaoline	25
3.2.8. Calcium Carbonate (CaCO ₃)	30
3.3. Specimen Preparation and Procedures.	35
3.3.1. Mixes Proportions	35

3.3.2. Mixing Technique for Nano particles	36
3.3.3. Casting and molding of samples	37
3.4. Concrete Properties Tests.	38
3.4.1. Fresh cement Mortar Properties Tests	39
3.4.2. Hard cement Mortar Properties Tests.	39
3.4.2.1. Water Permeability Test.	41
3.4.3. Mechanical Properties Tests.	41
3.4.3.1. Compressive Strength Tests	42
3.4.3.2. Splitting Tensile Strength Tests	42
3.5. Mineralogical Characteristics Tests.	43
3.5.1. Transmission Electron Microscope (TEM)	43
3.5.2. Scanning Electron Microscope (SEM)	45
3.6. Chemical Analysis by X-Ray Fluorescence Spectrometry (XRFS)	4
CHAPTER (4): ANALYSIS AND DISCUSSION OF TEST RESULTS 4.1. Introduction	47
	47 47
4.1. Introduction	
4.1. Introduction	47
4.1. Introduction	47 47
4.1. Introduction. 4.2. Properties of Fresh Concrete. 4.2.1. Slump Flow Test. 4.2.2. The results of flow test of NK.	47 47 47
4.1. Introduction. 4.2. Properties of Fresh Concrete. 4.2.1. Slump Flow Test. 4.2.2. The results of flow test of NK. 4.2.3. The results of flow test of NCaCO3.	47 47 47 48
4.1. Introduction. 4.2. Properties of Fresh Concrete. 4.2.1. Slump Flow Test. 4.2.2. The results of flow test of NK. 4.2.3. The results of flow test of NCaCO3. 4.3. Properties of Hardened Concrete.	47 47 47 48 49
4.1. Introduction. 4.2. Properties of Fresh Concrete. 4.2.1. Slump Flow Test. 4.2.2. The results of flow test of NK. 4.2.3. The results of flow test of NCaCO3. 4.3. Properties of Hardened Concrete. 4.3. 1.Compressive Strength.	47 47 47 48 49
 4.1. Introduction. 4.2. Properties of Fresh Concrete. 4.2.1. Slump Flow Test. 4.2.2. The results of flow test of NK. 4.2.3. The results of flow test of NCaCO3. 4.3. Properties of Hardened Concrete. 4.3. 1. Compressive Strength. 4.3.1.1. Effect of using NCaCO₃ in Compressive Strength. 	47 47 47 48 49 49
4.1. Introduction 4.2. Properties of Fresh Concrete 4.2.1. Slump Flow Test 4.2.2. The results of flow test of NK 4.2.3. The results of flow test of NCaCO3 4.3. Properties of Hardened Concrete 4.3. 1.Compressive Strength 4.3.1.1. Effect of using NCaCO ₃ in Compressive Strength 4.3.1.2. Effect of using NK on Compressive Strength	47 47 47 48 49 49 49 51

4.3.3. Relation between Compressive and Tensile Strength	55
4.3.4 Water Permeability test results	57
4.3.5. Microstructure Analysis	60
4.3.5.1. SEM Results for specimens with 1% NCaCO ₃	61
4.3.5.2. SEM Results for specimens with 3% NCaCO ₃	63
4.3.5.3. SEM Results for specimens with 7% NK	65
4.3.5.4. SEM Results for specimens with 8% NK	68
4.3.5.5. SEM Results for specimens with 10% NK	70
4.3.5.6. SEM Results for specimens with 4% NCaCO ₃	73
4.6. Economic Feasibility Study of using nano materials in concrete construction	76
CHAPTER (5): CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORK 5.1. Introduction	80
5.2. Conclusion.	80
5.3. Recommendations	81
5.4. Future Work.	81
REFRENCES	83
Appendices	91
Appendix (1)	92
Appendix (2)	93
Appendix (3)	95
Appendix (4) .	97
Appendix (5)	99
Appendix (6)	101

List of Tables

CHAPTER (3)	Page
Table 3.1: Physical and Chemical Properties of cement used	29
Table 3.2: Chemical composition of materials used by weight.	29
Table 3.3: Physical Properties of fine aggregates	31
Table 3.4: Physical Properties of Coarse aggregates	32
Table 3.5: Technical Data and Physical properties of GLENIUM C315	33
Table 3.6: Physical Properties of Silica Fumes	34
Table 3.7: Physical Properties of NK	35
Table 3.8: Grading of Kaoline %	35
Table3.9: Mineral Composition of Kaoline	36
Table 3.10: Physical Properties of CaCO3	40
Table 3.11: Chemical Composition of CaCO3 by weight.	41
Table 3.12: Proportions of concrete samples on weight basis	47
Table3.13: Specifications of water vane motor	48
Table3.14: Comparison in Specification between light microscope and TEM	55
CHAPTER (4)	
Table 4.1: Slump Flow Test results for NK mixes and Control mix	63
Table 4.2: Slump Flow Test results for Nano CaCO3 and Control mix	64
Table 4.3: Compressive strength results for for mixtures containing NCaCO3	65
Table 4.4: Percentage of increase of Compressive Strength for NCaCO3	65
Table 4.5: Compressive strength results for mixtures containing NK	67
Table 4.6: Percentage of increase of Compressive Strength for NK	67
Table 4.7: Splitting Tensile Strength of NCaCO ₃ mixtures	69
Table 4.8: Percentage of increase of Splitting Tensile Strength of NCaCO ₃	69
Table 4.9: Splitting Tensile Strength of NK mixtures	70

Table 4.10: Percentage of increase of Splitting Tensile Strength of NK	71
Table 4.11: Comparison between (F _{tst} /F _C) using different NK mixtures	72
Table 4.12: Comparison between (F_{tst}/F_C) using different NCaCO ₃ mixtures	73
Table 4.13: Water Permeability Result tests after 28 Days.	74
Table 4.14: Materials Price list	94
Table 4.15: Total Prices of Mixtures with and without NCaCO3.	94
Table 4.16: Total Prices of Mixtures with and without NK.	95
Table 4.17: Excess Compressive Strength unit Price of Mixture	96

List of Figures

CHAPTER (3) Figure 2.1: Nano particle size [38]	Page
Figure 2.2: Illustration of the 'top down' and 'bottom up' approaches [39]	11
Figure 2.3: Location map of Kaoline of Gebel Gunna Egypt	14
Figure 2.4: Diagrammatic sketch of the structure of kaolinite mineral	15
CHAPTER (3)	
Figure 3.1: Ordinary Portland cement	28
Figure 3.2: Testing sand used in Lab.	30
Figure 3.3: Fine aggregate used grading curve.	30
Figure 3.4: Coarse aggregate used grading curve.	31
Figure 3.5 : Silica Fume Powder.	34
Figure 3.6: SEM micrograph of Silica Fume particles.	34
Figure 3.7: Kaoline Powder	35
Figure 3.8: Automatic electrical furnace.	36
Figure 3.9a: TEM micrograph of NK.	37
Figure 3.9 b: TEM micrograph of NK mean size particles 24nmm	37
Figure 3.10 : TEM micrograph of NK mean size particles 72nmm	39
Figure 3.11.a : TEM micrograph of NK means size particles 173nmm	39
Figure 3.11.b: TEM micrograph of NMK means size particles 92nmm	40
Figure 3.12: Calcium Carbonate Powder.	41
Figure 3.13: Morphology of Calcium Carbonate Nanoparticles	42
Figure 3.14: TEM micrograph of nano-CaCO ₃ size 40nm.	42
Figure 3.15: TEM micrograph of nano-CaCO ₃ size 24 nm	43
Figure 3.16:: TEM micrograph of nano-CaCO ₃ (rejected)	43
Figure 3.17: TEM micrograph of nano-CaCO ₃ size (rejected)	44

Figure 3.18: TEM micrograph of nano-CaCO ₃ (rejected)	44
Figure 3.19: TEM micrograph of nano-CaCO ₃ (rejecte)	45
Figure 3.20: TEM micrograph of nano-CaCO ₃ (rejecte)	45
Figure 3.21: Van Motor	48
Figure 3.22: The Rotary Mixer used	49
Figure 3.23: Mold for Concrete samples (15x15x15) cm and cylinder (15x30) cm	4
Figure 3.24: Slump Cone.	9
Figure 3.25: Slump flow is measured.	51
Figure 3.26: Water Permeability Equipment.	51
Figure 3.27: Adjusting the specimen.	52
Figure 3.28: Specimen extracted from Permeability Equipment	52
Figure 3.29: Specimen after splitting Test	52
Figure 3.30: Specimen water penetration depth.	53
Figure 3.31: Universal testing machine SHIMADZU 500 KN	54
Figure 3.32: Universal testing machine.	55
Figure 3.33: Comparison in Configuration between light microscope and TEM	56
Figure 3.34: The Transmission electron microscope (TEM).	57
Figure 3.35: Diagram of TEM.	57
Figure 3.36: Scanning Electron Microscope (SEM)	58
Figure 3.37: (Axios, WD-XRF, PANalytical 2005, Netherlands)	60
CHAPTER (4)	
Figure 4.1: Slump Flow diameter for mixes containing NK	63
Figure 4.2: Slump Flow diameter for mixes containing Nano CaCO3	64
Figure 4.3: Compressive strength results for mixtures containing NCaCO3	66
Figure 4.4: Compressive strength results NCaCO3	66
Figure 4.5: Compressive strength results for mixtures containing NK	68

Figure 4.6: Compressive strength results NK	(
Figure 4.7: Splitting Tensile strength results for mixtures NCaCO3	,
Figure 4.8: Splitting Tensile strength results for mixtures NK	,
Figure 4.9: Comparison between spitting and compressive strength for NK	,
Figure 4.10 Comparison between spitting and compressive strength for NCaCO ₃	,
Figure 4.11: Water penetration depths for mixtures NCaCO3	,
Figure 4.12 : Coefficient of permeability for mixtures NCaCO3	,
Figure 4.13: Water penetration depths for mixtures NK	,
Figure 4.14: Coefficient of permeability for mixtures NK	,
Figure 4.15: SEM for Control Sample.	,
Figure 4.16a: SEM for formation of the carboaluminates crystals in concrete	,
Figure 4.16b: SEM for formation CSH in concrete.	
Figure 4.16c: SEM for formation of pores in concrete	
Figure 4.17a: SEM for Control Sample.	
Figure 4.17b: SEM for agglomeration of nano-CaCO ₃	
Figure 4.18a: SEM for Control Sample.	
Figure 4.18b: SEM for NK 7%	
Figure 4.18c: SEM for NK 7%	
Figure 4.18d: SEM for NK 7%	
Figure 4.19a: SEM for Control Sample.	
Figure 4.19b: SEM for NK 8%	
Figure 4.19c: SEM for NK 8%	
Figure 4.20a: SEM for Control Sample.	
Figure 4.20b: SEM for NK 10%	
Figure 4.20c: SEM for NK 10%	
Figure 4 20d: SEM for NK 10%	