

Cryoablation of Goiter Irrespective of Thyroid Profile

Thesis

Submitted for Partial Fulfillment of M.D Degree in Endocrinology & Metabolism

By

Ashraf Zakaria Ali

M.B., B. Ch., M.Sc. M.sc - Endocrinology Ain-Shams University

Under Supervision of

Prof. Dr. Mohamed Saad Hamed

Professor of Internal Medicine & Endocrinology Former Head of Endocrinology Unit, Ain-Shams University

Prof. Dr. Sherif Zaky Mansour

Professor of Ophthalmology Former Head of Ophthalmology Dept. - Ain-Shams University

Prof. Dr. Mohamed Reda Halawa

Professor of Internal Medicine & Endocrinology Head of Endocrinology Unit - Ain-Shams University

Dr. Ahmed Mohamed Bahaa El-Din

Lecturer of Internal Medicine & Endocrinology Faculty of Medicine Ain-Shams University

Dr. Nesma Ali Ibrahim

Lecturer of Internal Medicine & Endocrinology Faculty of Medicine Ain-Shams University

Faculty of Medicine Ain Shams University 2018

In the name of Allah the most gracious and most merciful who granted me the power to accomplish this work.

No words can describe my appreciation for **Prof. Dr. Mohamed Saad Hamed,** Professor of Internal Medicine & Endocrinology, Former Head of Endocrinology Unit, Ain-Shams University, not only for his continuous encouragement and tremendous support, but also for believing in me and pushing me forward from my first steps in neurology, and for being a role model in helping and teaching the younger.

I am profoundly grateful to **Prof. Dr. Sherif Zaky Mansour**, Professor of Ophthalmology, Former Head of Ophthalmology Dept. - Ain-Shams University, for the enduring wisdom that this work retains from his invaluable years of expertise, for his determination to set this work straight from the beginning, and his relentless mentoring.

I wish to express my genuine respect and gratefulness to **Prof. Dr.**Mohamed Reda Halawa, Professor of Internal Medicine & Endocrinology, Head of Endocrinology Unit - Ain-Shams University, for his enormous help, his constructive criticism, meticulous revision and quidance, that enabled me to accomplish this work.

My most sincere appreciation goes to **Dr. Ahmed Mohamed Bahaa El-Din,** Lecturer of Internal Medicine & Endocrinology, Faculty of Medicine Ain-Shams University, for his generous help and valuable recommendations, his sincere effort and tolerance were inspiring.

I owe much debt and admiration for **Dr. Nesma Ali Ibrahim**, Lecturer of Internal Medicine & Endocrinology, Faculty of Medicine Ain-Shams University, for her everlasting support, continuous encouragement, for her dedication and genuine help, for being there every single step and his inspiring passion for this work.

Contents

Subjects	
List of abbreviations	II
List of Figures	VII
List of Tables	IX
• Introduction	1
Aim of the Work	7
• Review of Literature	
♦ Chapter (1): Thyroid Gland & Goitre	8
◆ Chapter (2): Conventional Treatment Modalities of Thyroid Gland Disorders	89
◆ Chapter (3): Nonsurgical Approaches to the Management of Thyroid Nodules	
♦ Chapter (4): Cryotherapy	116
Subjects and Methods	135
• Results	145
• Discussion	176
Summary and Conclusion	183
• Recommendations	188
• References	189
Arabic Summary	

List of Abbreviations

Abbrev. Meaning

ACR : American College of Radiology

ACTH : Adrenocorticotropic hormone

ANS : Autonomic nervous system

ARC : Anterior retinal cryotherapy

ATA : American Thyroid Association.

ATC : Anaplastic Thyroid Cancer

AVNRT : AV nodal reentrant tachycardia

cryo : Cryoablation is a process that uses extreme cold

DIT : Diiodotyrosine

DOMS : Delayed Onset Muscle Soreness

EBRT : External beam radiation therapy

FNB : Fine needle biopsy

FTC : Follicular Thyroid Cancer

GABA : γ-aminobutyric acid

HIFU: High-intensity focused ultrasound

Elist of Abbreviations

IVB : Intravitreal bevacizumab

M : Monoiodotyrosine

MCT : Monocarboxylate transporter

MEN : Multiple Endocrine Neoplasia

MTC : Medullary Thyroid Cancer

NIS : Sodium-Iodide Symporter

PDR : Proliferate diabetic retinopathy

PEI : Percutaneous ethanol injection

POMC: Pro-opiomelanocortin

PTC: Papillary Thyroid Cancer

PTU : Propylthiouracil

RLNs : Recurrent laryngeal nerves

SVT : Supraventricular tachycardia

T4 : Thyroxine

T₄ : tetra-iodothyronine

TBG: Thyroxine-Binding Globulin

TBPA: Thyroxine-binding prealbumin

Elist of Abbreviations

Tg : Thyroglobulin

TPO: Thyroid peroxidase

TREs : Thyroid hormone response elements

TRH : Thyrotropin-releasing hormone

TSH: Thyroid hormones. serumthyrotropin

TSHr : Thyroid stimulating hormone receptor

TTR : Transthyretin

VH : Vitreous hemorrhage

WBC : Whole body cryotherapy

List of Figures

No.	<u>Figure</u>	<u>Page</u>
1	Reltions of thyroid gland.	10
<u>2</u>	Anterior & posterior relations of thyroid gland by CT scan.	10
3	Thyroid hormones synthesis in thyroid follicular cells.	14
<u>4</u>	Thyroid hormones feedback mechanism.	20
<u>5</u>	Goiter in a female's right side aspect of front of the neck.	26
<u>6</u>	Macroscopic picture of thyroid nodules in excised thyroid gland.	59
<u>7</u>	Risk stratification of thyroid nodule according to ultrasound imaging.	64
<u>8</u>	American Thyroid Association characteristics to diagnose malignant thyroid nodules.	65
9	Benign thyroid nodule.	68
<u>10</u>	Types of calcifications within thyroid nodule.	68
<u>11</u>	Ultrasound guided FNAB from thyroid nodule.	71
<u>12</u>	Elastography report.	75
<u>13</u>	Histological picture of Papillary thyroid carcinoma.	88
<u>14</u>	Thyroidectomy operation.	100
<u>15</u>	Procedure & ultrasound pictures of ethanol injection.	112

No.	<u>Figure</u>	Page
<u>16</u>	Thyroid nodule during HIFU.	115
<u>17</u>	Cryoprobeapplication to thyroid gland of wistar rat.	123
<u>18</u>	Structure of Cryoprobe.	129
<u>19</u>	Cryoprobe internal structure.	129
20	Cryochamber.	131
21	Cryoapparatus	133
22	NO cylinder	133
23	Cryoprobe.	134
24	Handling cryoprobe.	134
25	Cyo.apparatus unit	140
<u>26</u>	Nitrogen (NO) cylinder connected to cryo.apparatus	140
<u>27</u>	Cryo.probe, one free terminal applied on skin & one terminal to be connected to cryo.apparatus	141
<u>28</u>	Method of holding & application of cryo.probe	141
<u>29</u>	Iceball formed at tip of cryo.probe	142
<u>30</u>	A-B: Small-sized thyroid nodule, showing size reduction more than 50% of its original size, after 6 months	147
<u>31</u>	A-B: Right thyroid lobe nodule, that did not appear after 2nd cryoablation sessions; after 6 months.	147
32	A-B: Left thyroid lobe nodule, showing reduction in size & change in its echogenecity, after 2nd cryoablation sessions, after 6 months.	148

No.	<u>Figure</u>	Page
<u>33</u>	A-B: large right thyroid lobe nodule, almost occupying the right lobe, showing size reduction after 1st cryoablation sessions.	148
<u>34</u>	A-B: Thyroid nodule size change in patient 3 after 3 months from 1stcryo sessions.	148
<u>35</u>	A-B: Ishtmic nodule, disappearing after 2nd cryoablation sessions, perhaps due to being most superficial & more vulnerable to cryoablation size-reduction effect.	149
<u>36</u>	A-B: large left thyroid lobe nodule, showing mild size reduction, after 2nd cryoablation sessions, after 6 months.	149
<u>37</u>	A-B: Right thyroid lobe nodule size change in patient after 3 months.	149
38	A-B: ovoid cystic thyroid nodule, showing size reduction after 6 months, especially in its longitudinal diameter.	150
<u>39</u>	A-B: Cystic thyroid nodule size change in patient 1 after 6 months, more than 40% of its original size.	150
<u>40</u>	Comparison between cases & control group, as regards median value of their nodule size, before start of our study, at 3 months & after 6 months)	163
41, 42, 43	Comparison between cases & controls regarding percentage of change in their nodule size, at 0-3 months, 3-6 months & 0-6 months.	165
44, 45, 46	Comparison between mean value of age groups showing no change or decrease in nodule size, at 0-3 months, 3-6 months & 0-6 months).	167

Se List of Figures

No.	<u>Figure</u>	Page
<u>47</u>	Comparison between male & female cases showing nodule size change, at 0-3 months, 3-6 months & 0-6 months).	168
<u>48</u>	Comparison between different thyroid states within cases, showing nodule size change, at 0-3 months, 3-6 months & 0-6 months).	169
<u>49</u>	Comparison between thyrotoxic& non-thyrotoxic cases, regarding nodule size change, at 0-3 months, 3-6 months & 0-6 months)	171
<u>50</u>	Comparison between cases & controls, as regards median TSH values, before study, at 3 months & after 6 months)	172
<u>51</u>	Comparison between cases & controls, as regards median free T4 values, before study, at 3 months & after 6 months)	173
<u>52</u>	Comparison between cases & controls, as regards median free T3 values, before study, at 3 months & after 6 months)	175

List of Tables

No.	<u>Table</u>	Page
1	Percentages of different forms of thyroid hormone.	16
2	Diagnosis of diseases according to TSH & thyroid hormone levels.	24
<u>3</u>	Description of different thyroid disorders.	31
<u>4</u>	Types & causes of hypothyroidism.	48
<u>5</u>	Interpretation of thyroid hormone laboratory assessment.	49
<u>6</u>	Signs & symptoms of hypothyroidism.	51
7	Survival rates for different types of thyroid cancers.	88
8	Description of the whole study sample data	162
9	Description of the study sample data, within cases& controls	162
<u>10</u>	Comparison between cases and controls regarding age and gender	162
<u>11</u>	Comparison between cases and controls regarding nodule size before, after 3 & 6 months. (in mean & SD).	163
12	Comparison between cases and controls regarding nodule size before, after 3 & 6 months. (in median & IQR).	163
<u>13</u>	Comparison between cases and controls regarding nodule size percent of change after 3 & 6 months	164

No.	<u>Table</u>	<u>Page</u>
<u>14</u>	Comparison between cases and controls regarding nodule size percent of change after 3 & 6 months	164
<u>15</u>	Comparison between age groups among cases, regarding size change after 3, 6 and 3-6 months	166
<u>16</u>	Comparison between male and female cases regarding size change - Relation between gender & size change	168
<u>17</u>	Comparison between euthyroid, hypothyroid and thyrotoxics regarding size change	169
<u>18</u>	Relation between thyrotoxicosis& nodule size change	170
<u>19</u>	Relation between hypothyroidism &nodule size change	170
<u>20</u>	Relation between euthyroid state &nodule size change	171
<u>21</u>	Comparison between cases and controls regarding TSH before, after 3 & 6 months	172
<u>22</u>	Comparison between cases and controls regarding TSH percent of change after 3 & 6 months	173
<u>23</u>	Comparison between cases and controls regarding free T4 before, after 3 & 6 months	173
24	Comparison between cases and controls regarding free T4 percent of change after 3 & 6 months	174

Suist of Tables

No.	<u>Table</u>	<u>Page</u>
<u>25</u>	Comparison between cases and controls regarding free T3 before, after 3 & 6 months	174
<u>26</u>	Comparison between cases and controls regarding free T3 percent of change after 3 & 6 months	175

Introduction

Goiter (from the Latin *gutteria*, *struma*) is a swelling of the neck resulting from enlargement of the thyroid gland (thyromegaly). Goitre is treated according to the cause (*Abraham-Nordling*, *et al.*, 2005).

Thyroid gland can be ablated by 4 different procedures, including; medical ablation, surgical removal, radiotherapy & chemical ablation (*Bonnema et al.*, 2002).

Antithyroid drugs are believed to work by inhibiting the iodination of thyroglobulin by thyroperoxidase, and, thus, the formation of tetra-iodothyronine (T_4) (*Tunbridge et al.*, 2007).

A thyroidectomy is an operation that involves the surgical removal of all or part of the thyroid gland. It is a common surgical procedure that has several potential complications or sequela including: temporary or permanent change in voice, temporary or permanently low calcium, need for lifelong thyroid hormone replacement, bleeding, infection, and the remote possibility of airway obstruction due to bilateral vocal fold paralysis (*Cooper et al.*, 2006).

Ablative approaches using radioiodine are increasingly proposed for the treatment of Graves' disease & multinodulargoitre, but their ophthalmologic and biological

autoimmune responses remain controversial and data concerning clinical and biochemical outcomes are limited (*Devereaux et al.*, 2014).

Sonographically guided percutaneous ethanol injection for autonomously functioning thyroid nodules was first introduced in 1990 by *Livraghi et al*. The sclerotic mechanism of ethanol is cellular dehydration and protein denaturation in tissue, followed by coagulative necrosis, small vessel thrombosis, hemorrhagic infarct, and reactive fibrosis (*Verde et al.*, 2004).

Cryoablation is a process that uses extreme cold (cryo) to destroy or damage tissue (ablation). Cryotherapy is the local or general use of low temperatures in medical therapy. Cryotherapy is used to treat a variety of benign and malignant tissue damage (*Costello et al.*, 2015).

Ablation occurs in tissue that has been frozen by at least three mechanisms:

- 1. Formation of ice crystals within cells thereby disrupting membranes, and interrupting cellular metabolism among other processes;
- 2. Coagulation of blood thereby interrupting bloodflow to the tissue in turn causing ischemia and cell death; and
- 3. Induction of apoptosis, the so-called programmed cell death cascade.

(Storrs & Carina, 2015)