

FACULTY OF ENGINEERING

Electronics and Communications Department

Design of Wireless Transceiver Front-end

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

by

Ahmed Mohamed Attia Zamzam

Bachelor of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

Faculty of Engineering, Ain Shams University, 2012

Supervised By

Prof. Hani Fikry Ragai

Dr. Mohamed Ahmed Mohamed El - Nozahi

Cairo -(2018)

FACULTY OF ENGINEERING

Electronics and Communications

Design of Wireless Transceiver Front-end

by **Ahmed Mohamed Attia Zamzam**

Bachelor of Science in Electrical Engineering

(Electronics Engineering and Electrical Communications)

Faculty of Engineering, Ain Shams University, 2012

Examiners' Committee

Name and Affiliation	Signature
Prof. El-Sayed Mostafa Saad	
Electronics Engineering and Electrical Communications	
Faculty of Engineering, Helwan University	
Prof. Mohamed Amin Dessouky	
Electronics Engineering and Electrical Communications	
Faculty of Engineering, Ain Shams University	
Prof. Hani Fikry Ragai	
Electronics Engineering and Electrical Communications	
Faculty of Engineering, Ain Shams University	
Dr. Mohamed Ahmed Mohamed El-Nozahi	
Electronics Engineering and Electrical Communications	

Faculty of Engineering, Ain Shams University

Date: 25 July 2018

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name

Ahmed Mohamed Attia Zamzam

Signature

Date: 25 July 2018

Researcher Data

Name : Ahmed Mohamed Attia Zamzam

Date of birth : 21/3/1990

Place of birth : Cairo, Egypt

Last academic degree : B.Sc. in Electrical Engineering

Field of specialization : IC Design

University issued the degree : Ain Shams University

Date of issued degree : 2012

Current job : IC Design Engineer

Abstract

There is a huge demand for fully integrated, small size, and highly efficient transceivers, due to the enormous growth of wireless applications. Power amplifier (PA), specifically determines the performance of these transceivers, as it is the most power hungry block. Hence, any enhancement in its efficiency would result in a great decrease in the total power consumption. This thesis aims to study the technology performance limits as well as the design challenges of PAs. Due to the fact that the transceivers need to not only support high data rates but also have small cost, the main focus is on the commercial low cost CMOS technologies. Different active and passive loss mechanisms have been studied, and a new cascode switching technique has been proposed to increase the efficiency at 15 GHz. The proposed technique results in an enhancement of PAE by about 10.6 %.

In the recent years, a huge attention has been drawn to millimetre frequency range. This can be explained by the huge bandwidth allocated in these bands, which can result in very high data rates. In addition, the high frequency design enables the implementation of small size and high quality passives, which helps in achieving low cost, small form factor transceivers. 60 GHz offers an additional advantage, which is the reduced coverage range, and this provides better security. A state of the art ON/OFF key (OOK) 60 GHz transceiver architecture has been proposed. This architecture enables delivering high output power and low noise figure. In addition, a 60 GHz transmitter has been designed in bulk 65nm CMOS process. The transmitter utilizes a new current combined stacked injection locking topology which enhances both output power and efficiency. This PA delivers 19.5dBm output power with 15.5 % PAE.

The transmitter occupies an area of 1.5mmx1.2mm. Modelling of all the implemented inductors, capacitors as well as the layout routings is carried out using the electromagnetic simulator, SONNET. Post layout simulations show that the transmitter can deliver 20dBm output power with 10 % efficiency.

Thesis Summary

The thesis is divided to six chapters as listed below,

Chapter 1

In this chapter, an introduction about the design of CMOS transceivers is presented. Then the objectives of the thesis, as well as its contributions are demonstrated. Finally, the organization of the thesis is briefly discussed.

Chapter 2

Chapter 2 gives a sufficient background of different transmitter architectures, with a bigger focus on PAs. Several classes of PAs are demonstrated, and in addition, a survey of the existing techniques to enhance its performance is provided. Finally, the design challenges and the loss mechanisms of Class E PAs are studied, and the technology performance limits are highlighted.

Chapter 3*

In Chapter 3, the drawbacks of the conventional methodology of stacked PAs are demonstrated. A new cascode switching technique is proposed in order to mitigate the loss caused by these drawbacks. The theory is carried to design a PA at 15 GHz using 0.13u CMOS technology. A comparison is performed with a classic double stacked design. Simulation results show enhancement in both output power and power added efficiency by about 9% and 10.6% respectively.

^{*} The cascode enhancement technique was accepted for publication in 61st IEEE International Midwest Symposium on Circuits and Systems (2018)

Chapter 4*

In Chapter 4, A Current combined, stacked, injection locking technique is proposed in order to enhance both output power and power-added efficiency (*PAE*). Based on this introduced technique, a 60 GHz fully differential stacked power amplifier is designed in 65nm CMOS bulk process. The simulation results show an output power of 19.5dBm and *PAE* of 15.5%. Worst case process corners simulations are also provided.

Chapter 5

Chapter 5 focuses on the system level design of the front end of an OOK 60 GHz transceiver. A complete set of system specifications are provided using the link budget equations. In addition, the design of an up-conversion mixer, a power amplifier, a balun and a power combiner is demonstrated. Finally, post layout simulations of the transmitter are shown.

Chapter 6

In chapter 6, the thesis is summarized where the main contributions are highlighted. In addition, possible future research directions are suggested.

Keywords: 60GHz transmitter, 60GHz power amplifier, injection locking, cascode switching, Wilkinson power combiner.

^{*} The 60 GHz stacked injection locking power amplifier was published in the 19th annual IEEE Wireless and Microwave Technology Conference (WAMICON 2018).

Acknowledgment

First of all, I thank GOD for granting me the patience, strength and ability to complete this work. I wish to express my sincere gratitude to my supervisors, Dr. Mohamed El-Nozahi and Prof. Hani F. Ragai, for their encouragement, and useful discussions. Dr. Mohamed El-Nozahi deserves many special thanks. Without his guidance, and advice, this work wouldn't have been possible. I have learnt from him not only on the technical level but also on the personal one. I would like to thank Prof. Hani F. Ragai, who has taught me devotion to work. Special thanks to all my colleagues and friends for the many fruitful discussions. Many thanks goes to Professor Mohamed El-Dessouky and Professor El-Sayed Mostafa for serving as my defence committee members and taking parts from their valuable time to read and judge my thesis work. Last but not least, I would like to thank my parents, for their patience, care, and love that guided me through the whole journey.

Ahmed Mohamed Attia Zamzam

November 2018

Table of Contents

Chapter 1_	Introduction	1
1.1 Mo	otivation	1
1.2 Co	ntributions	3
1.3 Th	esis organization	3
Chapter 2	Literature Review and Design Challenges	5
2.1 Lit	erature review on RF transmitters	5
2.1.1	OOK Transmitter	5
2.1.2	Direct Conversion Transmitters	6
2.1.3	Heterodyne Transmitters	7
2.2 RF	Power amplifier principals	7
2.2.1	Trans-conductance based PAs	9
2.2.2	Switch mode PAs	14
2.3 Su	rvey on CMOS PAs	19
2.3.1	Cascode PA topologies	20
2.3.2	Injection locking topology	22
2.3.3	Stacking topologies	24
2.4 Cla	ass E PA	26
2.4.1	Classical Class E design	26
2.4.2	Classical Loss Mechanisms	32
2.4.3	Technology Performance limits	37
2.4.4	Maximizing efficiency and output power	39
2.5 Su	mmary	43
Chapter 3 Class E PA	A Cascode Switching Technique for Highly Efficient Sta	cked
		44

Introduction	44
Conventional double stacked PAs	45
Drawbacks of the double Stacked Class E topology	47
The proposed technique	49
Simulation results	51
1 15 GHz PA	51
2 6 GHz PA	57
3 30 GHz PA	62
Summary	66
4_ A Stacked 60 GHz Injection Locking Power Amplifier	
	67
Introduction	67
Challenges of Bulk CMOS Based PAs	68
Proposed PA architecture	69
PA Output stage	71
1 Differential topology	71
2 Stacking topology	73
3 Injection locking technique	77
4 Power down and modulation mechanism	79
.5 Output stage design methodology	80
6 Layout	82
7 Simulation Results	85
The Driver Stage	88
PA overall performance	92
Summary	95
5 Millimetre Wave Transceiver Design	
	96
	Introduction

5.1	Introduction		
5.2	Sys	stem Level Specifications	97
5.3	Tra	nnsceiver Architecture	101
5.4	600	GHz Transmitter	103
5.4	4.1	Design and layout challenges	103
5.4	4.2	Up-Conversion Mixer	105
5.4	4.3	Power amplifier	111
5.5	Tra	nnsmitter overall performance:	124
5.6	Sur	mmary	126
Chapte	r 6	Summary	127
6.1	Co	ntributions	127
6.2	Sug	ggestions For Future work	127
Bibliog	raphy	у	128

List of Figures

Figure 1.1 Frequency allocation spectrum of the United States of America	ca as
in [12]	2
Figure 2.1 OOK transmitter by directly switching the PA as in [13]	6
Figure 2.2 OOK transmitter by switching the LO signal as in [13]	6
Figure 2.3 Direct Conversion Transmitter as in [13]	6
Figure 2.4 Heterodyne Transmitter as in [13]	7
Figure 2.5 (a) Gm-based PA (b) in ON mode (c) in OFF mode	8
Figure 2.6 (a) Switch-based PA (b) in ON mode (c) in OFF mode	8
Figure 2.7 Linear trans-conductance PA model	9
Figure 2.8 Load terminations for Linear GM PAs (a) fundamental tone,	(b)
All other harmonics	9
Figure 2.9 Drain voltages and currents for different trans-conductance P.	A
classes	12
Figure 2.10 Class F1 schematic	13
Figure 2.11 Class F (a) Ideal drain current waveform (b) Ideal drain volt	age
waveform	13
Figure 2.12 Load terminations for class F1 PA (a) fundamental tone, (b)	The
third and fifth harmonics (c) All other harmonics	13
Figure 2.13 Class F2 schematic	
Figure 2.14 Class D traditional schematic	
Figure 2.15 Differential Class D topology	17
Figure 2.16 Difference between hard and soft switching	18
Figure 2.17 Class E schematic	19
Figure 2.18 The Class E PA Cascode topology as in [27]	20
Figure 2.19 The charge acceleration technique introduced in [28]	21
Figure 2.20 1.9GHz injection locking power amplifier as in [29]	22
Figure 2.21 The adopted injection locking topology in [31]	23
Figure 2.22 The Phase aligned mm-wave injection locked power amplif	
proposed in [32]	24
Figure 2.23 Double and quadruple stacked PAs introduced in [33]	25
Figure 2.24 Wide band Class D PA presented in [34]	25
Figure 2.25 (a) Classic Class E PA, (b) Ideal Drain current and voltage	
waveforms	27

Figure 2.26 Symbolic Drain voltage and current for any arbitrary duty cycle
(Do)
Figure 2.27 Instantaneous peak current and voltage for any arbitrary output
duty cycle (Do) as in [30]
Figure 2.28 ON-State model of transistor for high frequency operation 36
Figure 2.29 Conventional Class E PA
Figure 2.30 Simplified model for (a) Bulk CMOS technology (b)Triple n-
well (c) SOI technology40
Figure 2.31 Theoretical maximum achievable PAE versus output power for
non-stacked and double stacked PA using 130nm CMOS process
Figure 3.1 Conventional double stacked PA
Figure 3.2 Double stacked PA (a) OFF model, (b) ON model
Figure 3.3 Different voltage signals for the double stacked topology (a) Input
driving signal (Vin), (b) Cascode input voltage (Vg2), (c) Drain voltage of
main device (Vd1), and (d) Cascode device's driving signal (Vgs2) 48
Figure 3.4 Optimal cascode voltage waveform
Figure 3.5 The proposed PA using enhanced cascode driving signal 50
Figure 3.6 The Different voltage swings for the proposed 15 GHz design 52
Figure 3.7 The Different voltage swings for the conventional 15 GHz design
Figure 3.8 Conventional switching voltage of M1 and M3 for the 15 GHz
design
Figure 3.9 Conventional drain current of M1 and M3 for the 15 GHz design
Figure 3.10 Proposed switching voltage of M1 and M3 for the 15 GHz
design
Figure 3.11 Proposed drain current of M1 and M3 for the 15 GHz design $\! 54$
Figure 3.12 Power loss of M3 for 15GHz design
Figure 3.13 Power loss of M1 for 15GHz design
Figure 3.14 Total Power loss for 15GHz design
Figure 3.15 Output Power across frequency (15GHz design)
Figure 3.16 Drain Efficiency across frequency (15GHz design)
Figure 3.17 Power added efficiency across frequency (15GHz design) 56
Figure 3.18 The different voltage swings for the proposed 6GHz design \dots 58
Figure 3.19 The different voltage swings for the conventional 6GHz design

Figure 3.20 Conventional switching voltage of M1 and M3 for the 6 GHz	
design	59
Figure 3.21Conventional drain current of M1 and M3 for the 6 GHz design	n
	59
Figure 3.22 Proposed switching voltage of M1 and M3 for the 6 GHz design	gn
	59
Figure 3.23 Proposed drain current of M1 and M3 for the 6 GHz design	60
Figure 3.24 Power loss of M1 for 6GHz design	60
Figure 3.25 Power loss of M3 for 6GHz design	60
Figure 3.26 Total Power loss for 6GHz design	61
Figure 3.27 Output Power across frequency (6GHz design)	61
Figure 3.28 Drain Efficiency across frequency (6GHz design)	62
Figure 3.29 Power added efficiency across frequency (6GHz design)	62
Figure 3.30 The different voltage swings for the proposed 30GHz design $\! \!$	63
Figure 3.31 The different voltage swings for the conventional 6GHz design	n
	63
Figure 3.32 Proposed switching voltage of M1 and M3 for the 30 GHz	
design	64
Figure 3.33 Proposed drain current of M1 and M3 for the 30 GHz design	64
Figure 3.34 Conventional switching voltage of M1 and M3 for the 30 GHz	5
design	64
Figure 3.35 Conventional drain current of M1 and M3 for the 30 GHz desi	gn
	65
Figure 4.1 Stacked Bulk CMOS based PA	70
Figure 4.2 Architecture of the proposed PA	71
Figure 4.3 Output stage of the proposed PA	72
Figure 4.4 Single vs Differential PAs	73
Figure 4.5 Conventional multiple stacked PA	74
Figure 4.6 Theoretical maximum achievable PAE versus output power for	
non-stacked and double stacked 65nm Bulk CMOS amplifier. The vertical	
line shows output power level beyond which stacked topology results in	
higher PAE	
Figure 4.7 Injection Locking technique	78
Figure 4.8 Conventional Power down mechanism	
Figure 4.9 Proposed Power down mechanism	
Figure 4.10 Output stage unit of the proposed PA	81

Figure 4.11 Impedance model of a large device's Layout	83
Figure 4.12 Overlapping the source contacts of a couple of differential	
devices	83
Figure 4.13 Schematic description of the proposed layout strategy	84
Figure 4.14 Layout of the last stage	85
Figure 4.15 The typical output power for the last stage	86
Figure 4.16 The typical drain and power added efficiency of the last stage	86
Figure 4.17 Output power of the last stage for different corners	. 87
Figure 4.18 Drain and power added of the last stage for different corners .	. 87
Figure 4.19 PA driver stage	. 88
Figure 4.20 Layout of the unit driver cell	89
Figure 4.21 Output power of the unit driver cell	90
Figure 4.22 Drain and Power added efficiency of the unit driver cell	90
Figure 4.23 Output power of the Driver at different corners	91
Figure 4.24 Efficiency of the Driver at different corners	91
Figure 4.25 Total output power of the PA	92
Figure 4.26 Drain efficiency and power added efficiency of the PA	92
Figure 4.27 Power amplifier architecture and layout	93
Figure 4.28 Output power of PA across corners	94
Figure 4.29 Drain and power added efficiency of the Pa across corners	. 95
Figure 5.1 Free space propagation loss as in [49]	. 98
Figure 5.2 Output power requirement of the TX versus signal bandwidth for	or
different NF for an SNR of 12 dB	100
Figure 5.3 The block diagram of the complete transceiver architecture 1	102
Figure 5.4 The yellow supply planes in a single PA layout	104
Figure 5.5 Schematic of the up-conversion mixer using shunt peaking 1	107
Figure 5.6 Schematic of the up-conversion mixer using series peaking 1	107
Figure 5.7 Output power of the Mixer in the presence of different bandwid	lth
extension techniques	108
Figure 5.8 Layout of the up-conversion mixer	108
Figure 5.9 Output power of the up-conversion mixer	109
Figure 5.10 Power gain of the mixer	109
Figure 5.11 VCO and divider to RF Feed through	110
Figure 5.12 Phase Noise of the up-conversion Mixer	110
Figure 5.13 Layout of the PA	112
Figure 5.14 Output power of one amplifier	