

BLADE SHAPE OPTIMIZATION OF AIRCRAFT PROPELLER USING SPACE MAPPING SURROGATES

By

Eng. Usama Toson Fouad Toman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE
In
Engineering Mathematics

BLADE SHAPE OPTIMIZATION OF AIRCRAFT PROPELLER USING SPACE MAPPING SURROGATES

By

Eng. Usama Toson Fouad Toman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE
In
Engineering Mathematics

Under the Supervision of

Prof. Dr. Abdel-Kareem S. O. Hassan

Prof. Dr. Farouk M. Owis

Professor of Engineering Mathematics

Professor of Propulsion

Department of Engineering Mathematics and Physics

Faculty of Engineering, Cairo University

Prof. Dr. Farouk M. Owis

Professor of Propulsion

Department of Aerospace Engineering

Faculty of Engineering, Cairo University

Dr. Ahmed S. A. Mohamed

Associate Professor of Engineering Mathematics Department of Engineering Mathematics and Physics Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

BLADE SHAPE OPTIMIZATION OF AIRCRAFT PROPELLER USING SPACE MAPPING SURROGATES

By

Eng. Usama Toson Fouad Toman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE

In **Engineering Mathematics**

Approved by the Examining Committee	
Prof. Dr. Abdel-Kareem S. O. Hassan,	Thesis Main Advisor
Prof. Dr. Farouk M. Owis,	Advisor
Prof. Dr. Tarek M. A. El-Mistikawy,	Internal Examiner
Prof. Dr. Mostafa M. Abdalla , (Renewable Energy Dept - Zewail City of Sci	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Eng. Usama Toson Fouad Toman

Date of Birth: 18/11/1989 **Nationality:** Egyptian

E-mail: usamatoson@eng.cu.edu.eg

Phone: 01003389524

Address: 160, 3a St., Hadayek El Ahram, Haram, Giza

Registration Date: 1/3/2013 **Awarding Date:** 2018

Degree: Master of Science

Department: Engineering Mathematics and Physics

Supervisors:

Prof. Dr. Abdel-Kareem S. O. Hassan

Prof. Dr. Farouk M. Owis Dr. Ahmed S. A. Mohamed

Examiners:

Prof. Dr. Mostafa M. Abdalla (External examiner)
(Renewable Energy Dept., Zewail City of Science and Technology)
Prof. Dr. Tarek M. A. El-Mistikawy (Internal examiner)
Prof. Dr. Abdel-Kareem S. O. Hassan (Thesis main advisor)

Prof. Dr. Farouk M. Owis (Advisor)

Title of Thesis:

Blade Shape Optimization of Aircraft Propeller Using Space Mapping Surrogates

Key Words:

Propeller design optimization, blade element method, computational fluid dynamics, space mapping, kriging, surrogate model

Summary:

The aim of the present study is to perform a propeller blade shape optimization for maximum aerodynamic efficiency with a minimal number of high-fidelity model evaluations. A space mapping algorithm is utilized to link two of the most common propeller analysis models: the classical blade element momentum theory to be the coarse model; and the high-fidelity computational fluid dynamics (CFD) tool as the fine model. The optimum design is obtained after few iterations with only 56 CFD simulations. Further, an optimization method based on design of experiments and kriging response surface is used to validate the results and compare the computational efficiency of the two techniques. Finally, the shape of the blade cross-sectional airfoil is optimized to gain an additional improvement of 1.75% in the overall propeller efficiency.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Usama Toson Fouad Toman Date: 10/7/2018

Signature:

Dedication

Every challenging work needs self-efforts as well as guidance and support of persons who are very close to our heart.

I dedicate my humble effort to

- My sweet and loving 'Mother & Father' who taught me to believe and trust in Allah and whose affection, love, encouragement and prays of day and night make me able to achieve such success.
- My beloved 'wife'. Thank you for your advice, faith, patience and understanding.
- My supervisor 'Dr. Ahmed AbdelSamea' without whom, literally, this work would have never been accomplished.
- *Myself.* Good work, Usama. You are great!

Table of Contents

Table of	Contents	I
List of T	ables	IV
List of F	igures	V
Nomenc	lature	VI
Abbrevi	ations	VIII
Abstract	t	IX
Chapter	1: Introduction	1
1.1.	Aircraft Propeller Design Optimization	1
1.2.	Objective and Outline	6
1.3.	Document Layout	6
Chapter	2 : Propeller Aerodynamic Theory	7
2.1.	Introduction	7
2.2.	Overview of the Propeller Aerodynamic Theory	7
2.3.	The Most Common Propeller Analysis Techniques	11
2.3.	1. Axial Momentum Theory	12
2.3.2	2. Momentum Theory with Wake Rotation	14
2.3.3	Blade element theory	16
2.3.4	4. Blade element momentum theory (Strip Theory)	19
2.3.5	5. Computational Fluid Dynamics (CFD)	21
a)	Governing Equations	22
b)	Turbulence Modeling	24
2.4.	Airfoil Parameterization Methods	25
2.4.	I. PARSEC Method	25
Chapter	3 : Surrogate-Based Optimization and Space Mapping	27
3.1	Surrogate-Based Optimization	27
3.2	Functional Surrogates	29
3.2.	Design of Experiments	29

3.2.2	Surrogate Modeling Techniques	
a) F	a) Polynomial Regression	
b) I	Radial Basis Functions	
c) k	Kriging	
d) N	Neural Networks	
3.3 S	pace Mapping	
3.3.1	Introduction	
3.3.2	SM Concept	
3.3.3	Original SM Approach41	
3.3.4	Parameter Extraction (PE) 42	
a) S	Single-Point Parameter Extraction (SPE)	
b) N	Multiple-Point Parameter Extraction (MPE)	
c) S	Statistical PE	
d) I	Penalized PE	
e) (Gradient Parameter Extraction (GPE)	
3.3.5	Implicit Space Mapping (ISM)	
3.3.6	Generalized Space Mapping (GSM)	
Chapter 4	: Blade Shape Optimization Using Space Mapping Surrogates 48	
4.1 D	Design Problem Formulation	
4.1.1	Design Variables and Preassigned Parameters	
4.1.2	Propeller Aerodynamic Efficiency	
4.1.3	Design Constraints 49	
4.2 I	mplementations	
4.2.1	Coarse Model	
4.2.2	Fine Model50	
a)	Mesh Sensitivity Analysis	
b)	Validation of the Numerical Solution	
4.2.3	Comparing the Coarse and Fine Model Responses	
4.2.4	Space Mapping Algorithm 56	
4.2.5	Sensitivity Analysis	
4.2.6	Airfoil Shape Optimization	

Chapter 5 : Results and Discussions 6		60	
5.1	Cas	e 1: Three Design Cross Sections	60
5.	1.1	Comparing the current optimal design with a NACA blade design	63
5.	1.2	Off-design performance.	63
5.	1.3	Kriging Response Surface Optimization	67
5.	1.4	Airfoil Shape Optimization	68
5.2	Cas	e 2: Five Design Cross Sections	69
Concl	usions		72
Futur	e work	۲	73
Refere	ences .		74
Apper	ndix A	: BEM Theory Matlab Code	81

List of Tables

Table 4.1	Preassigned parameters	48
Table 4.2	The variation of propeller thrust and efficiency with mesh size	53
Table 5.1	Convergence of the solution (case 1)	62
Table 5.2	Current blade vs NACA blade	63
Table 5.3	Kriging response surface optimization	68
Table 5.4	Results comparison of the two optimization techniques	68
Table 5.5	Airfoil shape optimization	69
Table 5.6	Convergence of the solution (case 2)	71
Table 5.7	Results comparison between case 1 and case 2	71

List of Figures

Figure 2.1	Propeller stream-tube as modeled by axial momentum theory	12
Figure 2.2	Trajectory of an air particle passing through the propeller disc	15
Figure 2.3	Annular streamtube cross sectional area	15
Figure 2.4	Blade division	17
Figure 2.5	Velocity and force diagram for blade element theory	17
Figure 2.6	Velocity and force diagram for blade element momentum theory	20
Figure 2.7	Control parameters of PARSEC method	26
Figure 3.1	Example of L^k full factorial experimental designs	31
Figure 3.2	Example of central composite experimental designs	32
Figure 3.3	The generation of 20 samples via the Monte Carlo, LHS, and OSF methods.	33
Figure 3.4	Neural networks: (a) neuron basic structure; (b) two-layer feed-forward neur	ral
network arch	itecture	36
Figure 3.5	Linking coarse and fine models through a mapping.	38
Figure 3.6	Illustration of the fundamental notation of SM	40
Figure 3.7	Illustration of the ISM concept	45
Figure 3.8	Space mapping flowchart	47
Figure 4.1	Blade chord length and pitch angle at certain cross section	49
Figure 4.2	The computational domain and boundary conditions	51
Figure 4.3	Tetrahedral mesh around the airfoil	52
Figure 4.4	Tetrahedral mesh around the blade	52
Figure 4.5	Comparison between the fine model computations and experimental results:	(a)
thrust coeffic	cient; (b) efficiency	54
Figure 4.6	Comparison between the coarse and fine model responses: (a) advance ratio:	; (b)
blade configu	uration	56
Figure 4.7	Sensitivity Analysis	58
Figure 5.1	Second order chord distribution	60
Figure 5.2	Variation of responses with iterations	61
Figure 5.3	The optimum blade shape	62
Figure 5.4	The final shape and orientation of the three design cross sections	63
Figure 5.5	Efficiency curve for the optimum blade at 17° blade angle	64
Figure 5.6	Efficiency curves for different blade angles	64
Figure 5.7	Velocity vectors and turbulence kinetic energy at the design point $(J=0.6)$	65
Figure 5.8	Velocity vectors and turbulence kinetic energy at an off-design point (J =0.1)66
Figure 5.9	Velocity vectors and turbulence kinetic energy at an off-design point (J =0.8	5)67
Figure 5.10	The final shape of the three optimized airfoils	69
Figure 5.11	Linear chord distribution between sections	
Figure 5.12	Variation of responses with iterations	70

Nomenclature

a	Axial induction factor
a'	Angular induction factor
A	Propeller disc area
A_e	Blade element area
B	Number of blades
\boldsymbol{c}	Chord length
C_L	Lift Coefficient
C_D	Drag Coefficient
C_t	Thrust Coefficient
D	Propeller diameter
F	Prandtl tip loss factor
J	Advance ratio
J_c	Jacobian of the coarse model
$oldsymbol{J}_f$	Jacobian of the fine model
m	Mass flow rate
Ма	Mach number
n	Number of design cross sections
P	Power
P_i	Input power
Q	Propeller torque
dQ	Differential torque
r	Blade element radius
dr	Blade element width
rpm	Propeller angular speed, rev/min
R	Propeller radius
Re	Reynolds number
R_c	Coarse model response
R_f	Fine model response
R_s	Surrogate model response
T	Propeller thrust
dT	Differential thrust
U	Relative velocity or objective function
V_{∞}	Freestream velocity or aircraft speed
x_c	Coarse model point
x_c^*	Coarse model optimum point
χ_f	Fine model point
x_f^*	Fine model optimum point
α	Angle of attack
β	Pitch angle
	Propeller efficiency
η λ	Weighting factor

μ	Air dynamic viscosity
ρ	Air density
σ	Local solidity
φ	Relative inflow angle
ω	Angular velocity imparted to the flow
Ω	Propeller Angular velocity, rad/sec

Abbreviations

ANN Artificial Neural Networks ASM Aggressive Space Mapping

ASO Aerodynamic Shape Optimization

BEM Blade Element Momentum
CAD Computer-Aided Design
CCD Central Composite Design
CFD Computational Fluid Dynamics
CSD Computational Structural Dynamics

DNS Direct Numerical Simulation

DOD D-Optimal Design
DOE Design of Experiments
GA Genetic Algorithm

GEK Gradient-Enhanced Kriging
GPE Gradient Parameter Extraction
GSM Generalized Space-Mapping
ISM Implicit Space Mapping
LES Large Eddy Simulation
LHS Latin Hypercube Sampling

MOGA Multi-Objective Genetic Algorithm MPE Multipoint Parameter Extraction

NSM Neural Space-Mapping

NISM Neural Inverse Space-Mapping
OLH Optimal Latin Hypercube
OSF Optimal Space-Filling
PE Parameter Extraction

RANS Reynolds-Averaged Navier-Stokes SBO Surrogate-Based Optimization

SM Space-Mapping

SPE Single-Point Parameter Extraction

UAV Unmanned Aerial Vehicles

Abstract

The aim of the present study is to perform a propeller blade shape optimization for a maximum aerodynamic efficiency with a minimal number of high-fidelity computational fluid dynamics (CFD) model evaluations. A physics-based surrogate approach exploiting space mapping (SM) technology is employed for the design process. A space mapping algorithm is utilized, for the first time in the field of propeller design, to link two of the most common propeller analysis models: the classical, simplest, and computationally cheap blade element momentum theory to be the coarse model; and the high-fidelity but computationally expensive CFD tool as the fine model. The algorithm constructs a new "surrogate" combining the advantages of accuracy and computational cheapness of the fine and coarse models, respectively. The numerical CFD simulations are performed using the finite volume discretization of the Reynolds-Averaged Navier-Stokes (RANS) equations on an adaptive unstructured grid. Two design case studies are investigated varying the number of design parameters. In the first case, three design cross sections along the blade radius are considered: hub, mean, and tip whereas five cross sections are considered in the second case. The optimum design is obtained after few iterations with a small number of computationally expensive CFD simulations. Further, an optimization method based on design of experiments and kriging response surface is used to validate the results and compare the computational efficiency of the two techniques. The results show that SM technique is more computationally efficient.

After optimizing the overall blade shape, the shape of the cross-sectional airfoil is optimized for maximum lift to drag ratio. For this purpose, we used the Matlab optimization toolbox coupled with Xfoil software to predict the airfoil performance. PARSEC parameterization technique is used to parameterize the airfoil shape with eleven parameters. After the optimum airfoil is obtained, it is used to rebuild the optimum predesigned blade to be then analyzed. An additional improvement of 1.75% in the overall propeller efficiency is gained.