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Summary:

The aim of the present study is to perform a propeller blade shape optimization for maximum
aerodynamic efficiency with a minimal number of high-fidelity model evaluations. A space mapping
algorithm is utilized to link two of the most common propeller analysis models: the classical blade
element momentum theory to be the coarse model; and the high-fidelity computational fluid dynamics
(CFD) tool as the fine model. The optimum design is obtained after few iterations with only 56 CFD
simulations. Further, an optimization method based on design of experiments and kriging response
surface is used to validate the results and compare the computational efficiency of the two techniques.
Finally, the shape of the blade cross-sectional airfoil is optimized to gain an additional improvement

of 1.75% in the overall propeller efficiency.
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Abstract

The aim of the present study is to perform a propeller blade shape optimization for a
maximum aerodynamic efficiency with a minimal number of high-fidelity computational
fluid dynamics (CFD) model evaluations. A physics-based surrogate approach exploiting
space mapping (SM) technology is employed for the design process. A space mapping
algorithm is utilized, for the first time in the field of propeller design, to link two of the
most common propeller analysis models: the classical, simplest, and computationally
cheap blade element momentum theory to be the coarse model; and the high-fidelity but
computationally expensive CFD tool as the fine model. The algorithm constructs a new
“surrogate” combining the advantages of accuracy and computational cheapness of the fine
and coarse models, respectively. The numerical CFD simulations are performed using the
finite volume discretization of the Reynolds-Averaged Navier-Stokes (RANS) equations
on an adaptive unstructured grid. Two design case studies are investigated varying the
number of design parameters. In the first case, three design cross sections along the blade
radius are considered: hub, mean, and tip whereas five cross sections are considered in the
second case. The optimum design is obtained after few iterations with a small number of
computationally expensive CFD simulations. Further, an optimization method based on
design of experiments and kriging response surface is used to validate the results and
compare the computational efficiency of the two techniques. The results show that SM
technique is more computationally efficient.

After optimizing the overall blade shape, the shape of the cross-sectional airfoil is
optimized for maximum lift to drag ratio. For this purpose, we used the Matlab
optimization toolbox coupled with Xfoil software to predict the airfoil performance.
PARSEC parameterization technique is used to parameterize the airfoil shape with eleven
parameters. After the optimum airfoil is obtained, it is used to rebuild the optimum pre-
designed blade to be then analyzed. An additional improvement of 1.75% in the overall
propeller efficiency is gained.



