Posterior corneal astigmatism changes in cases with Keratoconus

Thesis Study

Submitted for partial fulfillment of master degree in ophthalmology

Submitted By:

Mohammed Elsaid AbdElaziz Mahmoud M.B.BCS

Supervised by:

Prof. Dr. Ismael Ebraheem Hamza

Professor of Ophthalmology
Faculty of medicine, Ain-Shams University

Prof. Dr. Ahmed Hassan Assaf

Professor of Ophthalmology
Faculty of medicine, Ain-Shams University

Prof. Dr. Tamer Fahmy Eliwa

Assistant professor of Ophthalmology Faculty of medicine, Ain-Shams University

Faculty of medicine,
Ain-Shams University
Cairo, 2018

Acknowledgement

First and foremost, I must praise and thank constantly almighty **Allah** for giving me countless grace that helps me to complete this work.

I wish to express my sincere gratitude to Prof. Dr. Ismael Ebraheem Hamza

Professor of Ophthalmology, Faculty of medicine, Ain-Shams University

for his kind supervision, constant support and encouragement through the progress of this work.

I would like to express my deepest gratitude to **Prof. Dr. Ahmed**Hassan Assaf, Professor of Ophthalmology, Faculty of
medicine, Ain-Shams University, for his continuous valuable advice
and support throughout the whole study.

I feel extremely grateful to **Prof. Dr. Tamer Fahmy Eliwa**, Assistant professor of Ophthalmology, Faculty of medicine, Ain-Shams University

for his precious time and continuous assistance to me throughout the 2 years of this study.

Mohammed Elsaid AbdElaziz

Dedication

- I dedicate my dissertation work to the soul of my mother (May God have mercy on her) she never left my side and encourage me a lot.
- Special feeling of gratitude to my family, and my lovely daughter.
- To everyone help me and support me to complete this work.

CONTENTS

•	List of abbreviationsI
•	List of figures III
•	List of tables V I
•	Introduction1
•	Aim of the work5
•	Review of literature
	▶ Epidemiology of keratoconus 6
	▶ Pathogenesis of keratoconus 7
	▶ Clinical picture of keratoconus10
	▶ Corneal imaging18
	▶ Pentacam tomography21
•	Patients and methods46
•	Data management and statistic analysis51
•	Results52
•	Discussion75
•	Summary and Recommendations80
•	References83
•	الملخص العربي

List of abbreviations

AB.	Asymmetrical bow tie
ARC	Anterior radius curvature
ART	Ambrosio relational thickness
Astig.	Astigmatism
ATR	Against-the-rule astigmatism
astigmatism	
BCDA	Best corrected distant acuity
CCT	Central corneal thickness
CKI	Central keratoconus index
CTmin	Corneal thickness at the thinnest
	point
CTSP	Corneal thickness spatial profile
D.	diopter
Dist	Distance between Central corneal
CCT_CTmin	thickness and corneal thickness a
	the thinnest point
ECM	extra cellular matrix
IHA	Index of height asymmetry
IHD	Index of height decentration
IL	Interleukin
IS.	Inferior steepening
ISV	Index of surface variance
IVA	Index of vertical asymmetry
KC	keratoconus
Mt DNA	Mitochondrial DNA
MMPs	Matrix metalloproteinases
PCA	Posterior corneal astigmatism
PPI avg	Average progression index

PRC	Posterior radius curvature
PTI	percentage thickness increase
Q-val	Q Value
RS	Reference surface
SB	Symmetrical bow tie
SMA	Smooth muscle actin
SRAX	Skewed radial axes
SS	Superior steepening
TCA	Total corneal astigmatism
TGF	Tumor growth factor
TL	Thinnest location
TNF	Tumor necrosis factor
UCVA	Uncorrected visual acuity
WTR	With-the-rule astigmatism
astigmatism	

List of figures

Figure	Subject	Pa
		ge
Figure 1	Model of the interaction of several soluble inflammatory mediators with corneal stromal keratocytes	8
Figure 2	Systemic associations with keratoconus	11
Figure 3	Prominent corneal nerves	12
Figure 4	Fleischer's Ring	13
Figure 5	Vogt lines	14
Figure 6	Munson sign	15
Figure 7	Charleux"s oil droplet sign	17
Figure 8	placido disc image	18
Figure 9	Nipple cone	24
Figure 10	Oval cone	25
Figure 11	Globus cone	25
Figure 12	Elevation map with best fit sphere reference body	27
Figure 13	central cone as shown on the elevation map	28
Figure 14	A peripheral cone as shown on the elevation map	29
Figure 15	posterior elevation map	30
Figure 16	Belin/Ambrosio Enhanced Ectasia display	31
Figure 17	pachymetry map. normal appearance	36
Figure 18	Abnormal shapes in pachymetry maps	37

Figure 19	Abnormal shapes in pachymetry	37
	maps, dome shape	
Figure 20	thickness profile, normal	39
	appearance	
Figure 21	thickness profile, Quick slope	40
Figure 22	thickness profile, S-shape	41
Figure 23	thickness profile, flat shape	41
Figure 24	thickness profile, inverted shape	42
Figure 25	Flat k of anterior surface in studied	55
	groups	
Figure 26	Steep k of anterior surface in	55
	studied groups	
Figure 27	Mean K in studied groups	56
Figure 28	The K max of studied groups	56
Figure 29	anterior corneal astigmatism in	57
	studied groups	
Figure 30	anterior Q value in studied groups	57
Figure 31	Flat K of posterior surface in	60
	studied groups	
Figure 32	Steep K of posterior surface in	60
	studied groups	
Figure 33	Posterior astigmatism in studied	61
	groups	
Figure 34	The Q value of posterior corneal	61
	surface of studied groups	
Figure 35	The mean K of posterior corneal	62

	surface of studied groups	
Figure 36	The central corneal thickness in	64
	studied groups	
Figure 37	The pachymetry progressive index	64
	(PPI) of studied groups	
Figure 38	Front elevation thickness in studied	65
	groups	
Figure 39	Back elevation thickness in studied	65
	groups	
Figure 40	ISV in studied groups	67
Figure 41	IVA in studied groups	67
Figure 42	IHA in studied groups	68
Figure 43	IHD in studied groups	68
Figure 44	CK1 in studied groups	69
Figure 45	Scatter plot for correlation between	70
	Posterior Q value and CK1	
Figure 46	Scatter plot for correlation between	71
	ACA and PCA	
Figure 47	Scatter plot for correlation between	71
	anterior Q value and posterior	
	corneal astigmatism	
Figure 48	Scatter plot for correlation between	72
	Posterior Q value and posterior	
	corneal astigmatism	
Figure 49	pentacam 4 maps for keratoconus	73
	case number 90 in our study	
Figure 50	pentacam 4 maps for keratoconus	74
	case number 90 in our study	

List of Tables

Table	Subject	page
Table 1	Amsler-Krumeich Classification for Grading Keratoconus	20
Table 2	ABCD grading system for classification keratoconus	21
Table 3	anterior corneal parameters in studied groups	54
Table 4	posterior corneal parameters in studied groups	59
Table 5	CCT,pachymetric progressive index,anterior and backe corneal elevations in studied groups	63
Table 6	Corneal indices in studied groups	66

INTRODUCTION

Introduction:

Keratoconus is non inflammatory, ectatic corneal disorder characterized by progressive corneal thinning that results in corneal protrusion, irregular astigmatism, and decreased visual acuity.(Gomes et al, 2015)

The incidence of keratoconus is about 1 of 2,000 individuals with a higher incidence in refractive surgery candidates.(Jonas et al, 2009)

The pathogenesis of keratoconus still unknown but in general it is multi factorial disease resulting from interaction between genetic, environmental and behavior factors. The genetic factors related to abnormalities in the stromal keratocyte epithelium, the corneal an extracellular matrix component, that is why it occurred bilaterally with family history. Environmental behavioral factors include contact lens wear and chronic eye rubbing. This interaction between these multiple different factors lead to an abnormal organization of the collagen fibers in corneal stroma with loss in the anchoring capacity of the collagen fibrils in the Bowman membrane,

that lead to decrease the collagen content in keratoconic corneas compared with normal corneas.(Gomes et al,2015)

Keratoconus starts posteriorly with early change in posterior corneal curvature, then progress to anterior corneal surface. So that curvature changes on the anterior corneal surface might miss signs of early posterior corneal ectasia.(Hosseini et al,2014)

The corneal posterior surface has been suggested to be useful and important clinical tool for keratoconus detection and even for subclinical cases.(Hosseini et al,2014)

The onset of keratoconus is insidious and the progression is irreversible therefore early diagnosis of keratoconus is needed. However, the variable risk of keratoconus progression make a challenge to manage these cases.(McGhee et al,2015)

Diagnosis of keratoconus has greatly improved from simple clinical diagnosis with the advent of better diagnostic devices like corneal topographers based on Placido disc and recent elevation based tomography.(Davidson et al,2014) Since slit lamp examinations cannot detect keratoconus in early stages, and visual acuity may not be affected, corneal topography and tomography are the only reliable methods for detecting early keratoconus or keratoconus suspect.(Randleman et al,2008)

Although Placido disk-based corneal topography is known to be a highly sensitive and specific diagnostic tool, it only examines the anterior corneal surface, and does not evaluate the curvature and elevation of the posterior corneal surface, which is considered to be significant especially in early stage keratoconus detection. The development of new technologies, such as slit-scanning technologies, rotating Scheimpflug devices, and optical coherence tomography, makes it now possible to quantitatively measure the posterior corneal curvature, and to provide useful diagnostic information for the detection of keratoconus in a clinical setting.(Kamiya et al,2014)

Koch and his colleagues in 2012, found that significant increase of posterior corneal astigmatism (PCA)(0.86 ± 0.45 in patients with KC than normal eyes (0.30 ± 0.15 D). In 2016, Naderan &his associates reported a strong

correlation between anterior corneal astigmatism (ACA) and posterior corneal astigmatism (PCA) with severity of KC, More importantly ACA was more affected than PCA with an increase in the severity of KC. On the other hand, PCA was more affected than ACA in the early stages of KC.(Naderan et al,2016)