UTILIZATION FROM QUINOA SEED AS NON-TRADITIONAL SOURCE IN PREPARATION OF SOME BAKERY PRODUCTS

By

EMAD MOAWAD MOHAMAD MOAWAD

B.Sc. Agric.Sc. (Food Sciences and Technology), Ain Shams University, 2010

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

MASTER OF SCIENCE in

Agricultural Sciences (Food Science and Technology)

Department of Food Sciences
Faculty of Agriculture
Ain Shams University

Approval Sheet

UTILIZATION FROM QUINOA SEED AS NON-TRADITIONAL SOURCE IN PREPARATION OF SOME BAKERY PRODUCTS

By

EMAD MOAWAD MOHAMAD MOAWAD

B.Sc. Agric. Sc. (Food Sciences and Technology), Ain Shams University, 2010

This thesis for M.Sc. degree has been approved by:
Dr. Mahmoud Aly Ahmed Bekheet
Associate Prof. Emeritus of Food Science and Technology, Faculty of
Agriculture, Cairo University.
Dr. El-Sayed Ibrahim Yousif Abou El- Seoud
Prof. Emeritus of Food Science and Technology, Faculty of
Agriculture, Ain Shams University.
Dr. Yasser Fikry Mohammed kishk
Prof. of Food Science and Technology, Faculty of Agriculture, Ain
Shams University.
Dr. Ibrahim Rizk Sayed Ahmed Rizk
Prof. Emeritus of Food Science and Technology, Faculty of
Agriculture, Ain Shams University.

Date of Examination: /--/ 2018

UTILIZATION FROM QUINOA SEED AS NON-TRADTIONL SOURCE IN PREPARATION OF SOME BAKERY PRODUCTS

By

EMAD MOAWAD MOHAMAD MOAWAD

B.Sc. Agric. Sc. (Food Sciences and Technology), Ain Shams University, 2010

Under the supervision of:

Dr. Ibrahim Rizk Sayed Ahmed Rizk

Prof. Emeritus of Food Science and Technology, Food Science Dept., Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Yasser Fikry Mohammed Kishk

Prof. of Food Science and Technology, Food Science Dept., Faculty of Agriculture, Ain Shams University.

Dr. Mohamed Rashad Gouda Youssif

Researcher of Food Sciences and Technology, Bread and Pasta Research Dept., Food Technology Research Institute, Agriculture Research Center, Giza, Egypt.

ABSTRACT

Emad Moawad Mohamad Moawad: Utilization from Quinoa Seed as non-Traditional Source in Preparation of Some Bakery Products. Unpublished M.Sc. Thesis, Department of food Science, Faculty of Agriculture, Ain Shams University, 2018.

This study was carried out to investigate the effect of partial substitution (5, 10 and 15 %) or (20 and 25 %) of wheat flour (72% ext.) by whole quinoa flour (QF) on quality parameters of pan bread or biscuit, respectively. Production of free -gluten biscuit from QF was also studied. Quinoa flour contained the highest percentages of protein, lipids, ash and crude fiber. Also, QF contained the highest amount of essential amino acids. From the results, it could be seen that, water absorption and degree of softening increased by increasing the substitution levels of QF, but stability, resistance to extensions and energy of dough decreased. The addition of QF adversely affected the specific volume of pan bread. The lightness (L*) and yellowness (b*) of pan bread decreased, but redness (a*) increased gradually by increasing QF. Evaluation of the organoleptic properties of pan bread revealed that no significant differences ($P \le 0.05$) between control sample and pan bread samples contained QF for taste and summitry form. The pan bread contained QF had higher score for crust color, pore size and overall acceptability than control sample. Hardness (g) of pan bread increased and springiness decreased gradually during storage of pan bread at $(25^{\circ}c \pm 2)$. The rate of staling of pan bread contained QF was lower than control sample. Using of QF at 20 and 25 % gradually increased the weight, diameter and spread ratio of prepared biscuit samples as substitution level increased. The crust color of biscuit samples had significantly lower lightness (L*) and Redness (a*) values compared to control sample. On the other hand, the crust of biscuit samples made from weak wheat flour and containing 20% QF showed higher (b*) values compared to other samples, while crust of biscuit samples (control) made from strong wheat flour showed higher (b*) values compared to other samples. No significant (P≤0.05) differences were observed in sensory attributes for biscuits containing 20 or 25 % QF compared to the control sample. Higher values of hardness were recorded biscuit sample made from 25% QF. The height (mm) of biscuit samples were slightly decreased by increasing the level of addition of QF. On the other hand, the higher values of distance (mm) and peak time (s) were recorded in biscuit containing 25 % QF. Gluten-free biscuit made from 100 % QF contained the highest percentage of protein, lipids, ash and crude fiber compared to those of corn and rice-quinoa composite flour. The addition of corn and rice flour was adversely affected the thickness, diameter and spread ratio. The highest spread ratio was noticed of the biscuit made from 100% QF. It is worth mentioning that the biscuit made from 100 % QF or that of corn and rice – quinoa composite flour gave the biscuit with sensory acceptable. On the other hand, it could be noticed that the free -gluten biscuit containing 70% quinoa flour was darker in compared to other samples.

Key words: Wheat flour, Quinoa flour, Corn flour, Rice flour, Rheological properties, Pan bread, Biscuit, Free-gluten biscuit.

ACKNOWLEDGEMENT

I would like to express my deepest thanks to Allah, who has created us and the most beneficent and merciful and reconciling me.

I would like to express my sincere appreciation and full respect to my great supervisor, **Prof. Dr. Ibrahim Rizk Sayed Ahmed**, Professor Emeritus of Food Science and Technology, Food Science Dept., Fac. of Agric., Ain Shams University, for his kind supervision, guidance and values, and useful advices during this investigation in addition to the great effort that he made in writing this thesis. I enjoyed working with him and that was honored to work with him and he is considered the spiritual father to me.

I would like to express my sincere thanks and gratitude to the great and talented **Prof. Dr. Yasser Fikry Mohammed Kishk**, Professor of Food Science and Technology, Food Science Dept., Fac. of Agric., Ain Shams University, for his kind, careful guidance, continuous support and useful advice during the time of this study. I benefited from his scientific and practical knowledge, and he is considered as a brother and a dear to me.

I would like to express my deep gratitude to **DR. Mohamed Rashad Gouda Youssif,** Researcher, Bread and Pasta Research Dept., Food
Technology Research Institute, Agriculture Research Center, for his help
continuous support and useful advice during this investigation. I benefited
from his scientific.

Sincere appreciation for all staff members and colleagues in Food Science Dept., Fac. of Agric., Ain Shams University, for their helpful and contribution in my graduate education and enrichment.

A special appreciation and full thanks to my family and my dear wife theseprovide support and encouragement throughout my life and I wish **Allah** to keep them all for me.

CONTENTS

	Page
LIST OF TABLES	V
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	IX
1. INTRODUCTION	1
2. REVIEW OF LITRATURE	6
2.1. Chemical composition and nutritional quality of wheat, quinoa,	6
corn and rice flour	6
2.1.1. Wheat flour	6
2.1.2. Quinoa flour	7
2.1.3. Corn flour	15
2.1.4. Rice flour:	17
2.2. Physical properties of wheat flour dough and its blends with	20
quinoa flour	20
2.3. Rheological properties of wheat flour dough and its blends with	21
quinoa flour	21
2.4. Effect of composite flour on bakery products quality	25
2.4.1. Pan bread	25
2.4.1.1. Chemical composition and nutritional quality of pan bread	25
2.4.1.2. Physical and sensory properties of pan bread	28
2.4.1.3. Bread staling	33
2.4.2. Biscuit	33
2.4.2.1. Chemical composition of biscuit	33
2.4.2.2. Physical and sensory properties of biscuit	34
2.5. Production of bakery product for celiac diseases	40
3. MATERIALS AND METHODS	45
3.1. MATERIALS	45
3.1.1. Wheat flour	45
3.1.1.1. Strong wheat flour (SWF, 72% ext.)	45
3.1.1.2. Weak wheat flour (WWF, 72% ext.)	45

	Page
3.1.2. Quinoa seed	45
3.1.3. Corn flour (CF)	45
3.1.4. Rice flour (RF)	45
3.1.5. Other ingredients	45
3. 1.6. Chemicals	46
3.2. Methods	46
3.2.1. Technological methods	46
3.2.1.1. Preparation of whole meal quinoa flour (QF)	46
3.2.1.2. Preparation of composite flour blends	46
3.2.2. Analytical methods	48
3.2.2.1. Chemical analysis	48
3.2.2.2. Determination of amino acids	48
3.2.2.3. Determination of wet, dry gluten and gluten index	49
3.2.2.4. Falling number	49
3.2.3. Rheological properties	50
3.2.3.1. Farinograph test	50
3.2.3.2. Extensograph test	50
3.2.4. Processing of bakery products	50
3.2.4.1. Pan bread processing	50
3.2.4.2. Biscuit processing	51
3.2.5. Physical properties of bakery products	52
3.2.5.1. Physical properties of pan bread	52
3.2.5.2. Physical properties of biscuit	52
3.2.6. Sensory evaluation	53
3.2.6.1. Pan bread	53
3.2.6.2. Biscuit	53
3.2.7. Staling characteristics	54
3.2.8. Texture profile analysis (TPA) of pan bread	54
3.2.9. Texture profile analysis (TPA) of biscuit	56
3.2.10. Color measurements	57
3.2.11. Statistical analysis	58

	Page
4. RESULTS AND DISCUTION	59
4.1. Proximate composition of wheat, quinoa, corn and rice flour	59
4.2. Amino acids content and nutritional quality of strong wheat,	63
quinoa, corn and rice flour	
4.2.1. Protein nutritional quality of wheat, quinoa, corn and rice flour	67
4.3. Wet, dry gluten and gluten index of strong wheat flour substituted	67
with different levels of quinoa flour	
4.4. Falling and liquefaction number of strong wheat flour substituted	70
with quinoa flour	
4.5. Rheological properties of strong wheat flour and its blends with	73
quinoa flour	
4.5.1. Farinograph parameters of dough behavior of wheat flour dough	73
with quinoa flour	, ,
4.5.2. Extensograph parameters of wheat flour dough substituted with	78
quinoa flour	70
4.6. Effect of composite flour on pan bread quality	82
4.6.1. Chemical composition of pan bread	83
4.6.2. Physical properties of pan bread made from strong wheat flour	85
and its blends with quinoa flour	0.5
4.6.3. Color measurements of pan bread contained quinoa flour	89
4.6.4. Sensory characteristics of pan bread	98
4.6.5. Staling characteristic of pan bread	101
4.6.6. Texture profile analysis of pan bread	106
4.7. Effect of composite flour on biscuit quality	113
4.7.1. proximate chemical composition of different biscuit samples	113
4.7.2. Physical characteristics of biscuit prepared by substitution of	117
weak or strong wheat flour with quinoa flour	117
4.7.3. Color characteristics of biscuit	122
4.7.4. Sensory evaluation of biscuit prepared by	125
substitution of wheat flour with quinoa flour	125
4.7.5. Texture profile analysis of biscuit	128

IV

	Page
4.8. Free- gluten biscuit	132
4.8.1. Chemical composition of free- gluten biscuit	133
4.8.2. Physical properties of gluten-free biscuit	137
4.8.3. Color characteristic of gluten-free biscuit	141
4.8.4. Sensory characteristics of gluten-free biscuit	144
4.8.5. Texture profile parameters of biscuit prepared by quinoa flour	1 47
and its blends with corn and rice flour	147
5. SUMMARY	152
6. CONCLUSION	161
7. REFERENCES	162
8. ARABIC SUMMARY	1
9. ARABIC CONCLUSION	11

LIST OF TABLES

No.		Page
3.1.	Blends of strong wheat flour with quinoa flour to prepare pan bread	47
3.2.	Blends of strong and weak wheat flour with quinoa flour to prepare biscuit	47
3.3	Blends of quinoa flour with corn and rice flour to prepare gluten -free biscuit	47
3.4.	Recipe of pan bread	51
3.5.	Recipe of biscuit	52
3.6.	Reported sheet of biscuit	54
4.1.	Proximate chemical composition of strong wheat, quinoa, corn and rice flour (% on dry weight basis).	61
4.2.	Amino acids profile of strong wheat, quinoa, corn and rice flour (g $/100$ g protein).	65
4.3.	Wet, dry gluten and gluten index of strong wheat flour and substituted with quinoa flour at different levels (% on dry weight basis)	69
4.4.	Falling and liquefaction number of strong wheat flour and strong wheat flour substituted with different levels of quinoa flour	72
4.5.	Farinograph parameters of strong wheat flour and strong wheat flour with quinoa flour	75
4.6.	Extensograph parameters of strong wheat flour and its blends with quinoa flour	79
4.7.	Proximate chemical composition of pan bread prepared by partial substitution of wheat flour with quinoa flour (% on dry weight basis)	83
4.8.	Physical properties of pan bread produced by partial substitution of strong wheat flour with quinoa flour	86
4.9.	Color attributes of pan bread crust as affected by addition of different levels from quinoa flour	91
4.10.	Color attributes of pan bread crumb as affected by different levels from quinoa flour and storage for different periods at	96

No.		Page
	room temperature (25 $^{\circ}$ C \pm 2)	Ü
4.11.	Sensory characteristics of pan bread and its substituted with quinoa flour	99
4.12.	Staling rate of pan bread prepared by partial substitution of strong wheat flour by quinoa flour and storage for different periods at room temperature (25 C 2).	103
4.13.	Texture profile parameters of pan bread as affected by addition of quinoa flour and storage for different periods at room temperature (25 C 2).	107
4.14.	Proximate chemical composition of biscuit made from weak wheat flour substituted with different levels of quinoa flour (% on dry weight basis)	114
4.15.	Physical characteristics of biscuit prepared by using weak or strong wheat flour and its substituted with quinoa flour	118
4.16.	Color attributes of biscuit crust as affected by addition of different levels from quinoa flour to wheat flour	123
4.17.	Sensory characteristics of biscuit prepared from wheat flour by partial substituted with quinoa flour	126
4.18.	Texture profile parameters of weak wheat flour biscuit which substituted with different levels from quinoa flour	129
4.19.	Proximate chemical composition of free-gluten biscuit made from quinoa flour and its blends with corn and rice flour (% on dry weight basis)	134
4.20.	Physical characteristics of gluten-free biscuit prepared from wheat flour and its blends with quinoa flour	138
4.21.	Color attributes of gluten- free biscuit produced from QF and it blends with corn and rice flour	142
4.22.	Sensory characteristics of quinoa flour gluten- free biscuit substituted with corn and rice flour	145
4.23.	Texture profile parameters of free-gluten biscuit substituted with corn and rice flour	148

VII

LIST OF FIGURES

No.		Page
3.1.	Texture profile analysis. Interpretation of texture parameters	56
3.2.	Calculated of texture profile analysis of biscuit samples	57
4.1.	Proximate chemical analysis of strong wheat, weak wheat,	61
	quinoa, corn and rice flour	
4.2.	Reduction (%) of wet, dry gluten and gluten index blends	69
	with quinoa flour.	
4.3.	Falling number (Sec.) reduction (%) and liquidation number	72
	increase (%) of strong what flour and strong wheat flour	
	substituted with quinoa flour	
4.4.	Farinogram parameters of dough of strong wheat flour	76
	substituted with 0, 5, 10, 15, 20 and 25 % quinoa flour.	
4.5.	Extensograph parameters of dough of strong wheat flour	80
	substituted with 0, 5, 10, 15, 20 and 25 % quinoa flour	
4.6.	Changes in chemical composition of pan bread prepared	84
	from wheat flour substituted with 5 to 15% quinoa flour.	
4.7.	Changes in loaf weight, volume and specific volume of pan	87
	bread produced from strong wheat flour substituted with	
	quinoa flour.	
4.8.	Changes in color attributes (lightness, yellowness and	92
	redness) of crust pan bread containing 5, 10 and 15 QF	
4.9.	Photographs of pan bread prepared from strong wheat flour	93
	and its blends with quinoa flour	
4.10.	Changes in color attributes (lightness, redness and	97
	yellowness) of pan bread crumb during storage at room	
	temperature (25 $^{\circ}$ C± 2).	
4.11.	Staling rate of pan bread prepared by partial substitution of	104
	strong wheat flour by quinoa flour and storage for different	
	periods at room temperature (25 °C 2).	
4.12.	Hardness and springiness of pan bread during storage for	108

VIII

No.		Page
	different periods at room temperature (25 °C ±2)	
4.13.	Texture profile parameters of pan bread as affected by	109
	addition of quinoa flour and storage for different periods at	
	room temperature (25°C±2)	
4.14.	Changes in proximate chemical composition of biscuit made	115
	from weak wheat flour substituted with different levels of	
	quinoa flour	
4.15.	Reduction (%) for Physical properties (volume, specific	119
	volume and thickness) of biscuit.	
4.16.	Increase (%) for Physical properties (weigh, diameter and	120
	spread ratio) of biscuit	
4.17.	Photographs of biscuit made from wheat flour and its blends	124
	with quinoa flour	
	Texture profile parameters of weak wheat flour biscuit which	130
4.18.	substituted substitute with different levels from quinoa flour.	
4.19.	Texture profile parameters of weak wheat flour biscuit which	131
	substituted with different levels from quinoa flour	
4.20.	Changes in proximate chemical composition of free-gluten	135
	biscuit	
4.21.	Changes in physical characteristics of gluten- free biscuit	139
4.22.	Photographs of gluten -free biscuit made from quinoa flour	143
	and its blends with corn and rice flour	
4.23.	Texture profile parameters of free-gluten biscuit from QF,	149
	CF and RF	
4.24.	Texture profile parameters of quinoa flour biscuit substituted	150
	with corn and rice flour	

LIST OF ABBREVIATIONS

a* Redness

AA Amino acid

AASP Amino acid scoring pattern

AC Antioxidant capacity

AIB American Institute for baking

ANOVA Analysis of variance

b* Yellowness

BU Brabender Units
BV Biological Value

Ca Calcium

CD Celiac disease
CF Corn flour
Cm Centimeter
Co. Company

CO2 Carbon Dioxide

C.PER Calculated Protein Efficiency Ratio

CS Chemical Score

DDT Dough development time

DPPH 2,2-Diphenyl-1-picrylhydrazyl

E Extensibility

EAA Essential amino acids

EAAI Essential Amino Acid Index

e.g. For example et al. And others ext. Extract

FAO Food and Agriculture Organization

Fe Iron

FRAP Ferric ion reducing antioxidant power

g Gram

GF Gluten-free