

Faculty of Medicine Ain Shams University Nephrology Department

Prevalence of Access Recirculation in Prevalent Arterio-Venous (A-V) Fistula Hemodialysis Patients and its Effect on Hemodialysis Adequacy

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

ByMichael Mamdouh Fakhry

M.B.B.Ch Ain Shams University

Under supervision of Prof. Dr. Essam Nour El Din

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Dr. Lina Khedr

Lecturer of Internal Medicine and Nephrology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2018

Acknowledgment

First of all, I need to say thanks to "Allah", giving me patience, guiding my path and strengthening my will until I was able to produce this work.

Words fail to express how much I am indebted to **Prof. Dr. Essam Nour El Din** Professor of Internal Medicine & Nephrology, Faculty of Medicine, Ain Shams University for his endless support and guidance.

Special thanks and appreciation to **Dr. Lina Khedr**Lecturer of Internal Medicine & Nephrology, Faculty of
Medicine, Ain Shams University for her continuous support
and encouragement during preparation of this work.

List of Contents

Title	Page No.
List of Abbreviations	4
List of Tables	6
List of Figures	8
Introduction	1
Aim of the Study	13
Review of Literature	
Hemodialysis	14
Hemodialysis Adequacy	39
Access Recirculation	50
Patients and Methods	61
Results	66
Discussion	91
Summary	96
Recommendations	98
References	99
Arabic Summary	

List of Abbreviations

Abb.	Full term
ALB	Albumin
AV	
	. Arterio- venous fistulas.
	. Arterio- venous grafts.
BFR	
BP	_
	. Blood urea nitrogen.
Ca	. Calcium.
cAMP	. Cyclic adenosine monophosphate.
CBC	. Complete blood count.
CKD	. Chronic kidney disease.
Co2	. Carbon dioxide.
Colest	. Cholesterol.
CVD	. Cardiovascular disease.
DDS	. Dialysis disequilibrium syndrome.
DM	. Diabetes Mellitus.
ESRD	. End stage Renel disease.
GFR	. Glomerular filtration rate.
GN	. Glomerulonephritis.
НВ	. Hemoglobin.
HD	. Hemodialysis.
HIV	. Human immune deficiency virus.
IDH	. Intradialytic hypotension.
K	. Potassium
K	. Potassium.
L	. Liter.

List of Abbreviations Cont...

Abb.	Full term
MAP	. Mean arterial pressure . Sodium.
Na/ K ATPase	. Sodium/ potassium adenosine triphosphatase.
nPCR	Normalized protein catabolic rate.
PCKD	. Polycystic kidney disease.
PD	. Peritoneal dialysis.
PD	. Peritoneal dialysis.
Pmp	Per million population.
Po ₄	. Phosphorus.
PTFE	. Poly tetrafluoroethylene.
PTH	. Parathyroid hormone.
RMP	Resting membrane potential.
RRT	. Renal replacement therapy.
sp.Kt/V	. Single- pool Kt/V.
st.Kt/V	. Standard Kt/V.
TC	. Tunnelled hemodialysis catheter.
TMP	. Transmembrane pressure.
UF	. Ultrafiltration.
UFR	. Ultrafiltration rate.
URR	. Urea reduction ratio.
USA	. United States of America.
USRDS	. United States Renal Data System.

List of Tables

Table No.	Title	Page No.
Table (1):	Different demographic data amos studied patients.	
Table (2):	Blood Urea, URR & KT/V of the s	studied
Table (3):	patientsBasal k, Arterial K & access recircula	
` '	the studied patients	70
Table (4):	The Prevalence of Access Recircular studied patients.	
Table (5):	Showing the Routine lab results studied patients.	for all
Table (6):	Showing a Comparison between p with no access recirculation and thos access recirculation regarding demog data like Age, sex, dry wt in k position, duration of ESRD in months	atients se with graphic g, Avf
Table (7):	Showing a Comparison between p with no access recirculation and thos access recirculation regarding HD ad parameters like urea, URR, KT/V, & l	atients se with equacy
Table (8):	Showing a Comparison between p with no access recirculation and thos access recirculation regarding chemical data like alb, Ca, po4, PT CRP, Cholest, LDL, HDL, TG & F Glucose.	atients se with other H, Hb, Fasting
Table (9):	Showing a Correlation between recirculation level and the other sparameters like Age, sex, dry wt in position, duration of ESRD in months HCV ab, Urea, URR, KT/V, K, alb, CPTH, Hb, CRP, Cholest, LDL, HDL, Fasting Glucose	access studied kg, Avf s, Bp & a, po4, TG &

Introduction 🕃

List of Tables Cont...

Page No.
access tudied HCV
a

List of Figures

Fig. No.	Title	Page No.
Figure (1).	Homodialygia giravit	10
Figure (1):	Hemodialysis circuit	
Figure (2):	Ultrasound velocity dilution meth	
Figure (3):	Percentage distributions of HD	_
D' (4)	according to gender	
Figure (4):	Percentage distributions of HD	
	according to HCV ab	
Figure (5):	Percentage distributions of HD	-
	according to AVF Position	
Figure (6):	Percentage distributions of HD 1	•
	according to the number of AVF of	
Figure (7):	Prevalence of Access Recirculation	n71
Figure (8):	Showing a Comparison between 1	patients
	with no access recirculation an	d those
	with access recirculation re	garding
	Basal K level	75
Figure (9):	Showing a Comparison between 1	patients
	with no access recirculation an	d those
	with access recirculation regards	ing pre-
	dialysis blood urea level (urea 1).	76
Figure (10):	Showing a Comparison between	patients
	with no access recirculation an	•
	with access recirculation regarding	ng post-
	dialysis blood urea level (urea 2).	
Figure (11):	Showing a Comparison between	
8 , ,	with no access recirculation and th	-
	access recirculation regarding	
	Reduction ratio.	
Figure (12):	Showing a Comparison between	
g 0 (/-	with no access recirculation an	_
	with access recirculation re	
	KT/V	0

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (13):	Showing a Comparison between pa with no access recirculation and with access recirculation regarding	those g PTH
Figure (14):	Showing the Correlation between recirculation level and pre-dialysis	access blood
Figure (15):	urea	access ialysis
Figure (16):	Showing the Correlation between recirculation level and urea red ratio (URR%)	access uction
Figure (17):	Showing the Correlation between recirculation level and Basal k leve	access
Figure (18):	Showing the Correlation between recirculation level and KT/V	access
Figure (19):	Showing the Correlation between recirculation level and PTH level	access

INTRODUCTION

nd stage renal disease (ESRD) is one of the most common △life-threatening diseases. The number of patients accepted for renal replacement therapy including hemodialysis (HD), peritoneal dialysis, and kidney transplantation in developed and developing countries increases each year and imposes a major social and economic burden on these communities (USRDS, *2003*).

Some factors affect on the survival of ESRD patients include inadequate dialysis, method of renal replacement therapy, etiology of renal failure and the presence of comorbid disease (Goodkin et al., 2003).

It is well established that one of causes of inadequate dialysis in HD patients is arterio-venous (A-V) fistula access recirculation (AR). In addition, screening for recirculation may be used as a surveillance technique for the early detection of fistula stenosis, the correction of which may prevent thrombosis (Miskulin et al., 2003).

Hemodialysis access recirculation is diagnosed when dialyzed blood returning through the venous side reenters the dialyzer through the arterial needle, rather than returning to the systemic circulation and as a result, the efficiency of HD is reduced (Berkoben et al., 2011).

The Diagnosis of arterio-venous (A-V) fistula access recirculation (AR) could be done through two methods Non based method (Ultrasound dilution Urea Transonic Hemodialysis Monitor—USM) or Dilution techniques, utilizing the dilution of serum potassium (K), glucose, hematocrit (Hct) and hemoglobin (Hb) have been recently described (Basile et al., 2003).

Assessment of access recirculation (AR) is crucial to dialysis efficiency and there is thus a need for a method yielding a highly accurate, fast, easy and economical measurement that can be applied in any busy dialysis clinic. So the Non urea based methods are good method & avoid problems with cardiopulmonary recirculation, but they require expensive specialized devices, which limit their applicability.

In Dilutional -based method, the degree of access recirculation is measured by comparing the basal and arterial k concentration from the following formula:

Percent recirculation = $100 \times [1 - arterial K + /basal K +]$.

Potassium based dilutional method, similar to other dilutional methods, is not influenced by cardiopulmonary recirculation or veno-venous disequilibrium and is fast and accurate. Moreover it is very simple, economical, and can easily be performed in any dialysis unit (Tessitore et al., 2001).

The potassium based method showed: sensitivity (100 %); specificity (95%); predictive value, positive (91%); predictive value, negative (100%). In addition, the potassium based method appears to be more reliable than the two-needle urea based method (Brancaccio et al., 2001).

AIM OF THE STUDY

The study is an epidemiological study investigating the prevalence of arterio-venous (A-V) fistula access recirculation (AR) and its effect on adequacy of hemodialysis in patients using AVF as a vascular access.

Chapter 1

Hemodialysis

History of dialysis:

In 1854, Thomas Graham was the first to use the term 'dialysis'. He demonstrated that 'crystalloids', but not 'colloids', diffused down a concentration gradient across a semi-permeable membrane separating two solutions. In 1913, Abel Rowntree and Turner, wrote the first article on the technique of haemodialysis (HD), named the artificial kidney (*Smith & Thomas*, 2002).

The main aim was the removal of salicylates. The removal of fluid and toxins that accumulated due to kidney disease was not at this time considered. However, difficulties in dialysis construction and anticoagulation control prevented further developments for about 7 years. In 1920, Georg Haas, performed the first dialysis on a human uremic patient. Handmade colloidion membranes were used. Haas used multiple dialyzers to increase the surface area of blood exposed to the dialysis fluid, but the arterial pressure of the blood was blood insufficient to propel the through the entire extracorporeal circuit. He therefore introduced a pump into the circuit (Smith & Thomas, 2002).

Willem Kolff built a rotating drum dialyzer, which provided sufficient surface area for human HD. After the war in

1945, Kolff's technique was widely used, particularly in Sweden and the United States of America (USA). The treatment was mainly used for acute renal failure when kidney function could be expected to return to normal, following a short period of dialysis treatment. It was just a bridging dialysis. However vascular access limited dialysis to patients with acute renal failure who only needed renal replacement therapy for a short period of time (*Smith & Thomas*, 2002).

There after, the rotating drum dialyzer was modified by Dr. Carl Walter, and Edward Olson, to create a new version of the Kolff device. Jack Leonards and Leonard Skeggs produced a plate dialyzer, which permitted a reduction in the priming volume and allowed negative pressure to be used to remove fluid from the patient's system. Larger dialyzers followed, which necessitated the introduction of a blood pump (*Smith & Thomas*, 2002).

In 1950, Fredrik Kiil developed a parallel plate dialyzer with a large surface area (1 m2), requiring a low priming volume. In 1960, Richard Stewart produced the true forerunner of today's capillary flow dialyzer. It was a hollow-fibre dialyzer with a low priming volume and minimal resistance to flow (*Smith & Thomas*, 2002).