Frequency, Clinical Profile, Bacteriologic Patterns and Outcome of Ascitic Fluid Infection in Patients with Chronic Liver Disease in Tropical Medicine Department at Ain Shams University Hospitals

Thesis

Submitted for Partial Fulfilment of Master Degree in Eropical Medicine

By

Hazem Ahmed Kamal

M.B.B.CH

Faculty of Medicine - Ain Shams University

Under Supervision of

Prof. Sanaa Moharam Kamal

Professor of Tropical Medicine Faculty of Medicine - Ain Shams University

Ass. Prof. Sara Mahmoud Abdelhakam

Assistant Professor of Tropical Medicine Faculty of Medicine - Ain Shams University

Dr. Kareem Abd El Aziz Abd El Hafeez

Lecturer of Tropical Medicine Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Sanaa Moharam Kamal**, Professor of Tropical Medicine, Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Ass. Prof. Sara Mahmoud Abdelhakam, Assistant Professor of Tropical Medicine, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Yasmine**Mahmoud Massoud and **Dr. Kareem Abd**El Aziz Abd El Hafeez, Lecturers of Tropical
Medicine, Faculty of Medicine, Ain Shams
University, for their great help, active participation
and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Hazem Ahmed Kamal

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	
Introduction	1
Aim of the Work	4
Review of Literature	
Chronic Liver Disease	5
Ascites	38
Ascitic Fluid Infection	60
Patients and Methods	78
Results	85
Discussion	109
Summary	119
Conclusion	124
Recommendations	125
References	126
Arabic Summary	

List of Tables

Table No.	Title Page No.
Table (1):	Simplified diagnostic criteria of the international autoimmune hepatitis group
Table (2):	Diagnostic criteria of PBC-AIH overlap syndrome
Table (3):	Routine tests for diagnosis of Wilson's disease
Table (4):	Scoring system developed at the 8 th international meeting on Wilson's disease
Table (5):	Criteria for diagnosis of hepatorenal syndrome in cirrhosis
Table (6):	Antibiotic therapy for ascitic fluid infection 74
Table (7):	Child – Pugh classification 81
Table (8):	Demographic data and etiology of chronic liver disease among the enrolled patients
Table (9):	History and clinical symptoms of the enrolled patients
Table (10):	Physical signs among the enrolled patients 90
Table (11):	Complete blood picture in the studied groups 91
Table (12):	Liver functions in the enrolled patients
Table (13):	Renal functions and electrolytes among the enrolled patients
Table (14):	INR and C-reactive protein in the studied groups
Table (15):	Ascitic Fluid analysis
Table (16):	Isolated microorganisms and their antibiotic sensitivity in patients of group A 107

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Algorithm for diagnosis of autoim hepatitis using routine autoantibody to by indirect immunofluourescence enzyme linked immunosorbent assay to with a set of four autoantibodies	esting and esting
Figure (2):	Acute management of va	
Figure (3):	Modern variceal hemorrhage prophyla	axis 29
Figure (4):	Pathogenesis of ascites	45
Figure (5):	Algorithm for the diagnosis ascites according to the serum-a albumin gradient (SAAG)	scites
Figure (6):	The flow of patients through the study	y87
Figure (7):	Bar graph for comparison between grand group B regarding ascitic albumin, ascitic fluid protein, salbumin and serum total protein	fluid serum
Figure (8):	Bar graph for comparison between grand group B regarding portal vein, he vein and IVC diameters measure ultrasound.	epatic d by
Figure (9):	Box and whisker plot for correl between ascitic fluid cell count and leukocytic count	total
Figure (10):	Scatter plot for correlation bet polymorphnuclear leukocytes % and a fluid cell count.	ascitic
Figure (11):	Scatter plot for correlation between a fluid proteins and total serum protein	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (12):	Scatter plot for correlation between a fluid albumin and serum albumin	
Figure (13):	Scatter plot for correlation between a fluid cell count and ascitic fluid LDH.	
Figure (14):	Scatter plot for correlation between s blood glucose and ascitic fluid glucose	
Figure (15):	Scatter plot for correlation between Pugh score and ascitic fluid cell count	
Figure (16):	Scatter plot for correlation between I score and ascitic fluid cell count	
Figure (17):	Pie chart for results of ascitic fluid co and sensitivity among patients of grow	
Figure (18):	This box and whisker plot significant improvement in ascitic flucount among group A patients after up (48 hours after starting the antibio	id cell follow

List of Abbreviations

Abb.	Full term
ADA	Ascitic Fluid Deaminase Activity
	AntiDiuretic Hormone
	Ascitic Fluid Infection
	AutoImmune Hepatitis
	Acute Kidney Injury
	AntiMitochondrial Antibody
	$AntiNuclear\ Antibody$
	Alkaline Phosphatase
	Complete Blood Count
	Cirrhotic Cardiomyopathy
	Culture-Negative Neutrocytic Ascites
	C-Reactive Protein
	Danger Associated Molecular Patterns
	Demographic Health Survey
	Drug Induced Liver Injury
	DeoxyriboNucleic Acid
	Escherichia coli
ELISA	Enzyme Linked Immunosorbent Assay
	Endoscopic Cholangiopancreatography
	Fatty Liver Index
FVLM	Factor V Leiden Mutation
<i>GGT</i>	$Gamma ext{-}Glutamyltran speptidase$
HBcAg	Hepatitis B Core Antigen
_	Hepatitis B Virus Envelope
	Hepatitis B Virus
HCC	Hepatocellular Carcinoma
	Hepatitis C Virus
	Hepatic Steatosis Index

List of Abbreviations (Cont...)

Abb.	Full term
HPS	Hepato-Pulmonary Syndrome
	Hepatorenal Syndrome
	Hepatic Stellate Cells
	Hepatic Venous Pressure Gradient
	Indirect Immunofluourescence
	Immunoglobulin M
O	International Normalized Ratio
	Lactate Dehydrogenase
	Leukocyte Esterase Reagent Strips
	Liver Fat Score
	LiverKidney Microsome
	Large Volume Paracentesis
	Model for End-stage Liver Disease
	Monomicrobial Non-Neutrocytic Bacterascites
	Magnetic Resonance Cholangiopancreatography
	Methicillin-Resistant Staphylococcus Aureus
	Methylene Tetrahydrofolate Reductase
NAFLD	Nonalcoholic Fatty Liver Disease
<i>NASH</i>	Non-Alcoholic Steatohepatitis
<i>NAT</i>	Nucleic Acid Tests
<i>NF-</i> к <i>B</i>	Nuclear Factor-Kappa B
	Nitric Oxide
<i>PAMPs</i>	Pathogen Associated Molecular Patterns
	Primary Biliary Cirrhosis
	Polymerase Chain Reaction
	Polymorphonuclear Leukocytes
	Patatin-Like Phospholipase Domain-
	Containing 3
<i>PPHT</i>	Portopulmonary Hypertension

List of Abbreviations (Cont...)

Abb.	Full term
PSC	Primary Sclerosing Cholangitis
	Phosphatase and Tensin Homolog
	RiboNucleic Acid
	Serum-Ascites Albumin Gradient
	Spontanous Bacterial Peritonitis
	Spontaneous Bacterial Empyema
SLA/LP	SolubleLiver Antigen / Liver-Pancreas
	Smooth Muscle Antibody
T2DM	Type 2 Diabetes Mellitus
TIPS	Transjugular Intrahepatic Portosystemic
	Shunt
TLR-4	Toll-Like Receptor 4
<i>TyG</i>	Trigly ceride imes Glucose
<i>VAI</i>	Visceral Adiposity Index
<i>VEGF</i>	Vascular Endothelial Growth Factor
WHO	World Health Organization

ABSTRACT

The ascitic culture and sensitivity taken from the studied patients showed that 74% of patients with infected ascites had culture negative neutrocytic ascites, 22% of patients with infected ascites had monomicrobial bacterascites and 4% of patients with infected ascites had polymicrobial bacterascites. *E.coli* was the most frequently isolated micro-organism (7%).

As regards the upper gastrointestinal endoscopy, 30% of patients with infected ascites had no esophageal varices or fundal varices, 33% had small or medium sized esophageal varices and 26% had large risky esophageal varices banded. Also, 7% of patients with infected ascites had fundal varices injected.

Among the 27 studied patients with infected ascites, 12 patients responded to the first-line antibiotic therapy (third generation Cephalosporins), 10 patients responded to the second-line antibiotic therapy (9 patients responded to Meropenem where two of them were culture-based and one patient responded to Piperacillin/Tazobactam), three patients responded to culture-based Ciprofloxacin and one patient was asymptomatic Non-neutrocitic bacterascites who did not receive antibiotic treatment.

Keywords: Hepatitis B Virus Envelope - Hepatitis B Core Antigen - Factor V Leiden Mutation - Fatty Liver Index

Introduction

scites is a common problem in patients with chronic liver disease. Almost 60% of patients with cirrhosis will develop ascites (Ginés et al., 2010). The main pathophysiology of ascites is progressive increase in portal venous pressure as a result of increased intrahepatic resistance caused by cirrhosis (Fortune and Cardenas, 2017). Portal hypertension increases the hydrostatic pressure at the sinusoidal level and causes some hemodynamic changes including the splanchnic vasodilation, reduced systemic resistance, increased plasma volume and output. These alterations stimulate the angiotensin-aldosterone system leading to renal sodium and water retention that result in ascites (Gentilini and Laffi, 1992).

Patients with chronic liver disease and cirrhosis frequently develop infections of the ascitic fluid. Spontaneous bacterial peritonitis (SBP) is defined as an ascitic fluid infection without an evident intraabdominal surgically treatable source, it primarily occurs in patients with advanced cirrhosis (Sheer and **Runyon**, 2005). The diagnosis is established by positive ascitic fluid bacterial culture and elevated ascitic fluid absolute polymorphonuclear leukocyte (PMN) count (≥250 cells/mm³). SBP occurs in one third of patients with cirrhosis and is associated with hospital mortality of 20% to 40% (Ekser and *Mangus*, 2016). Patients who recover an attack of SBP have an increased risk of recurrence of 40% to 70% in one year and poorer survival on follow-up (Sheer and Runyon, 2005).

Other variants of ascitic fluid infections include culturenegative neutrocytic ascites, monomicrobial non-neutrocytic bacterascites and polymicrobial bacterascites (Runyon, 2009).

neutrocytic ascites Culture-negative (CNNA) is diagnosed when a patient had an elevated ascitic fluid absolute PMN count (≥250 cells/mm³) with a negative ascitic fluid culture and no evident intraabdominal surgically treatable source of infection (Pelletier et al., 1990). However, negative cultures maybe attributed to various factors such as inadequate culture techniques, inadequate ascitic fluid volume or unrecognized antibiotics intake (Kim et al., 2010).

Monomicrobial non-neutrocytic bacterascites (MNB) usually represents the colonization phase of ascitic fluid infection. The floras are similar to those of SBP (Runyon, 1990). MNB may progress to SBP in 62 to 86 % of cases. Progression from MNB to SBP can occur very rapidly with 50 to 170-fold rise in PMN count within 40 to 70 minutes (Runyon, 2009).

Polymicrobial bacterascites is caused by a traumatic paracentesis in which the bowel is injured by the paracentesis needle and bacteria leak, usually transiently, from the gut into the ascitic fluid. This complication is recognized when multiple bacteria are seen on Gram stain or grow on culture of nonneutrocytic ascites (ie, PMN count <250 cells/mm³) (Sagar et al., 2016).

The three variants of infected ascites are distinguished from classic SBP largely by ascitic fluid analysis. It is important to recognize these variants in at-risk patients who do not fulfil classical definitions of SBP.

The bacterial isolates in SBP may differ from the isolates detected in neutrocytic ascites, monomicrobial non-neutrocytic bacterascites and polymicrobial bacterascites. Gram-negative organisms are the most common organisms in SBP (Fiore et al., 2017).

Third generation cephalosporins are commonly used as emperical treatment of infected ascites with cirrhosis as they cover both enterobactericae and non-enterococcal streptococci (Fernández and Gustot, 2012). The development of multidrug resistant strains raise the need to investigate other antibiotic regimen based on the prevalence and the antimicrobial resistance pattern of the infection (Acevedo, 2015).

AIM OF THE WORK

The aim of this study is to assess the frequency, clinical profile, bacteriological patterns and outcome of spontaneous bacterial peritonitis and other variants of ascitic fluid infections in patients of liver cirrhosis admitted to Tropical Medicine department at Ain Shams University hospitals. The study also investigated the bacterial isolates and antibiotic sensitivity and resistance patterns in different variants of ascitic fluid infections.