

FLOW BEHAVIOR OF SOME FRUIT JUICES

By

Mariam Mohamed Adel Mohamed Zaki El-Menawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree
MASTER OF SCIENCE
In
Chemical Engineering

FLOW BEHAVIOR OF SOME FRUIT JUICES

By

Mariam Mohamed Adel Mohamed Zaki El-Menawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree
MASTER OF SCIENCE
In
Chemical Engineering

Under the Supervision of

Prof. Dr. Magdy Fouad Abadir

Prof. Dr. Manal Abdel Rahman Ali
Sorour

Professor of Inorganic Technology
Chemical Engineering Department
Faculty of Engineering, Cairo University

Prof. Dr. Manal Abdel Rahman Ali
Sorour

Professor of Food Engineering
and Packaging Department
Food Technology Research Institute, ARC

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

FLOW BEHAVIOR OF SOME FRUIT JUICES

By

Mariam Mohamed Adel Mohamed Zaki El-Menawy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree
MASTER OF SCIENCE
In
Chemical Engineering

Approved by the	
Examining Committee	
Prof. Dr. Magdi Fouad Abadir,	Thesis Main Advisor
Prof. Dr. Salwa Raafat Mostafa,	Internal Examiner
Prof. Dr. Kamel Mohamed Mahmoud El-Khateeb,	– External Examiner

Professor in National Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute

I further declare that I have appropriately acknowledged all sources used and I have cited them in the references section

Name: Mariam Mohamed Adel Mohamed Zaki El-Menawy

Date: 3rd November 2018

Signature:

Dedication

To my dad, may your soul rest in peace. I wish you were among us to witness it

To my mother and my super hero. I wouldn't have gone that far without you

To my backbone and blessing, my sister & brother (Sarah & Sherif) for their endless support

To my husband (Youssef) who continuously motivated me, supported me & kept pushing me whenever I stopped working

Acknowledgement

My special thanks goes to Allah for his merciful kindness & support

I'd like to express my deepest gratitude to Prof. Dr. Magdi F. Abadir, Professor of Inorganic Technology - Cairo University, Chem. Eng. Dept for his support, supervision, encouragement and continuous help throughout the thesis

Also, I'd like to express my thanks to Prof. Dr. Manal Abdel Rahman Ali Sorour, Food Enginering and Packaging Department, Food Technology Research Institute, ARC who was very grateful in providing all the information needed, all the support in using the food technology institute for conducting the experimental work and for the motivation

I'd like to thank Prof. Dr. Kamel El-Khatib & Prof. Dr. Salwa Mostafa for their valuable support, patience, evaluation & discussion

Many thanks are extended to Dr. Victor Aigbogun, Quality & Product Development Director in Beyti – Joint Venture between Almarai & PepsiCo. For providing all the information needed from the factory to conduct the rheological study and facilitating the guava & mango samples preparation

Table of Contents

List of Figures	VI
List of Tables	VIII
Nomenclature	X
Abstract	XI
Chapter 1: Introduction	1
Chapter 2: Literature Review	5
2.1 Introduction to Rheology	5
2.2 Fluid types	6
2.2.1 Time Independent Fluids	6
2.2.2 Time dependent Fluids	11
2.3 Production Schemes of fruit juice	13
2.3.1 Introduction	13
2.3.2 Production scheme of juice from raw fruit by Pasteurization [23]	13
2.3.3 Production scheme of juice from raw fruit through Belt Press / Decanter	· [24]15
2.3.4 Typical Processing Plant	18
2.4 Rheological studies of some fruit juices	21
2.4.1 Orange juice	21
2.4.2 Other citrus juices	21
2.4.3 Tomato juice	22
2.4.4 Apple juice	22
2.4.5 Mango juice	23
2.4.6 Guava juice	23
Chapter 3: Materials and Methods	24
3.1 Starting materials	24
3.1.1 Mango juice	24
3.1.2 Guava juice	25
3.2 Rheology Measurements	27
Chapter 4: Results and Discussion	29
PART I: Mango Juice	29
4.1 Mixing step of Mango Juice	29
4.1.1 Shear rate – shear stress diagrams of mixed mango juice	29
4.1.2 Apparent viscosity of mango juice after mixing	30
4.2 Homogenizing step of mango juice	30
4.2.1 Shear rate – shear stress diagrams of homogenized mango juice	30

4.2.2 Apparent viscosity of mango juice following homogenizing	33
4.2.3 Sensitivity of viscosity variations for homogenized mango juice	34
4.2.4 Evidence of thixotropy of mango juice on homogenizing	36
4.3 Cooling step of mango juice	36
4.3.1 Shear rate – shear stress diagrams of cooled mango juice	36
4.3.2 Apparent viscosity after cooling mango juice	38
4.3.3 Sensitivity of viscosity variations for cooled mango juice	39
4.3.4 Evidence of thixotropy of mango juice on cooling	41
PART II: Guava juice	42
4.4 Mixing step of guava juice	42
4.4.1 Shear rate – shear stress diagrams of mixed guava juice	42
4.4.2 Apparent viscosity of guava juice after mixing	43
4.5 Homogenizing step of guava juice	43
4.5.1 Shear rate – shear stress diagrams of homogenized guava juice	43
4.5.2 Apparent viscosity of guava juice following homogenizing	44
4.5.3 Sensitivity of viscosity variation for homogenized mango juice	46
4.5.4 Evidence of thixotropy of guava juice on homogenizing	46
4.6 Cooling step of guava juice	47
4.6.1 Shear rate – shear stress diagrams of cooled guava juice	47
4.6.2 Apparent viscosity after cooling guava juice	49
4.6.3 Sensitivity of viscosity variation for homogenized mango juice	50
4.6.4 Evidence of thixotropy of cooled guava juice	51
Chapter 5: Conclusion and Recommendations	52
5.1 Conclusion	52
5.2 Recommendations	53
References	54
Appendix	58

List of Figures

Figure 1-1 Juice Consumption Rate across EU in accordance with U.S	1
Figure 1-2 Juice Variants consumption in U.S	2
Figure 1-3 Percentage distribution of the actual annual consumption of the household	
Figure 1-4 Worldwide Consumption Per Capita in Kg in 2013	
Figure 1-5 juice market sorted by fruit content from 2010 - 2013	
Figure 2-1 Fluid Types Hierarchy	
Figure 2-2 Force required to move the plate	
Figure 2-3 Stress axis display	
Figure 2-4 Shear Stress VS shear Rate & Viscosity VS Shear Rate for Newtonian Fluids	8
Figure 2-5 Shear stress VS shear rate for various types of fluids	
Figure 2-6 Viscosity VS shear rate for different fluid types	
Figure 2-7 Thixotropy increasing & decreasing shear stress & shear rate after time t	
Figure 2-8 Rheopectic & Thixotropic viscosity VS shear rate	
Figure 2-9 Process Flow Diagram for juice production from raw juice	
Figure 2-10 Flowttweg Decanter	
Figure 2-11 Juice production from raw fruit through decanter	
Figure 2-12 Flottweg belt press	
Figure 2-13 Juice production from raw fruit through belt press	
Figure 2-14 juice from raw fruit through belt press & decanter	
Figure 2-15 Typical Juice Processing Flow Diagram	18
Figure 2-16 Homogenization technique	20
Figure 2-17 Homogenizer working technique	20
Figure 3-1 Brookfield Rheomoter	28
Figure 4-1 Shear stress – shear rate diagram of mango juice after mixing	29
Figure 4-2 Apparent viscosity – shear rate diagram of mango juice after mixing	30
Figure 4-3 Shear stress – shear rate diagram of mango juice after homogenizing	31
Figure 4-4 Variation of constant k in equation (4.3) with temperature	32
Figure 4-5 Apparent viscosity – shear rate diagrams of mango juice following homogenizi	ng
	33
Figure 4-6 Arrhenius plots for mango juice following homogenizing	34
Figure 4-7 Sensitivity of viscosity of homogenized mango juice	35
Figure 4-8 Thixotropic character of mango juice following homogenizing	36
Figure 4-9 Shear stress – shear rate diagram of mango juice following cooling	37
Figure 4-10 Variation of yield stress with temperature	37
Figure 4-11 Variation of consistency index with temperature	38
Figure 4-12 Apparent viscosity – shear rate diagrams of mango juice after cooling	38
Figure 4-13 Arrhenius plots for mango juice following cooling	39
Figure 4-14 Sensitivity of viscosity of cooled mango juice	40
Figure 4-15 Thixotropy of cooled mango juice samples	41
Figure 4-16 Shear stress – shear rate diagram of guava juice after mixing	42
Figure 4-17 Apparent viscosity – shear rate diagram of guava juice after mixing	
Figure 4-18 Shear stress – shear rate diagram of guava juice following homogenizing	
Figure 4-19 Apparent viscosity – shear rate diagram of guava juice following homogenizing	-
Figure 4-20 Arrhenius plots for guaya juice following homogenizing	.45

Figure 4-21 Sensitivity of viscosity of homogenized guava juice	46
Figure 4-22 Limited thixotropy of guava juice samples following homogenizing	47
Figure 4-23 Shear stress – shear rate diagram of guava juice following cooling	48
Figure 4-24 temperature dependence of consistency index of cooled guava juice	48
Figure 4-25 Apparent viscosity – shear rate diagram of guava juice following cooling	49
Figure 4-26 Arrhenius plots for cooled guava juice	50
Figure 4-27 Sensitivity of viscosity variation for cooled guava juice	51
Figure 4-28 Thixotropy of cooled guava juice samples	51

List of Tables

Table 2-1 Juice types	13
Table 3-1 Analysis results for Juice after mixing	24
Table 3-2 Analysis results for Juice after Homogenization	24
Table 3-3 Analysis results for Juice after heat exchanger	25
Table 3-4 Finished products specification	25
Table 3-5 Analysis results for Juice after mixing	26
Table 3-6 Analysis results for Juice after homogenization	26
Table 3-7 Analysis results for Juice after heat exchanger	26
Table 3-8 Finished product specification	27
Table 4-1 Shear thinning parameters for mango juice following homogenizing	31
Table 4-2 Activation energy for mango juice following homogenizing	33
Table 4-3 Values of coefficients in equation (4.6) for homogenized mango juice	35
Table 4-4 Activation energy for mango juice following cooling	39
Table 4-5 Values of coefficients in equation (4.6) for homogenized mango juice	40
Table 4-6 Bingham fluid parameters for guava juice following homogenizing	43
Table 4-7 Activation energy for guava juice following homogenizing	44
Table 4-8 Bingham fluid parameters for guava juice following cooling	47
Table 4-9 Activation energy for cooled guava juice	49
Table 4-10 Values of coefficients in equation (4.6) for cooled guava juice	50
Table 0-1 Mango Juice Readings at Different Temperatures After Mixing	58
Table 0-2 Shear Stress VS Shear Rate for Mango Juice at Different Temperatures After	
Homogenization	59
Table 0-3 Viscosity VS Shear Rate for Mango Juice at Different Temperatures After	
Homogenization	60
Table 0-4 Shear Stress VS Shear Rate for Mango Juice at Different Temperatures After	
Cooling	
Table 0-5 Viscosity VS Shear Rate for Mango Juice at Different Temperatures After Cool	_
Table 0-6 Thixotropic Calculation for Mango After Homogenization at Temperature 65°C	
with spindle rpm from 10-100	
Table 0-7 Thixotropic Calculation for Mango After Homogenization at Temperature 65°C	
with spindle rpm from 100-10 after 20 mins	64
Table 0-8 Thixotropic Calculation for Mango After Cooling at Temperature 65°C with	
spindle rpm from 10-	
	65
Table 0-9 Thixotropic Calculation for Mango After Cooling at Temperature 65°C with	
spindle rpm from 100-10 after 20 mins	
Table 0-10 Guava Juice Readings at Different Temperatures After Mixing	67
Table 0-11 Shear Stress VS Shear Rate for Guava Juice at Different Temperatures After	~ 0
Homogenization	68
Table 0-12 Viscosity VS Shear Rate for Guava Juice at Different Temperatures After	CO
Homogenization	09
Cooling	70
COULIE	/U

Table 0-14 Viscosity VS Shear Rate for Guava Juice at Different Temperatures After Cooli	ng
	71
Table 0-15 Thixotropic Calculation for Guava After Homogenization at Temperature 65°C	
with spindle rpm from 10-100	72
Table 0-16 Thixotropic Calculation for Guava After Homogenization at Temperature 65°C	
with spindle rpm from 100-10 after 20 mins	73
Table 0-17 Thixotropic Calculation for Guava After Cooling at Temperature 65°C with	
spindle rpm from 10-100	74
Table 0-18 Thixotropic Calculation for Guava After Cooling at Temperature 65°C with	
spindle rpm from 100-10 after 20 mins	75

Nomenclature

τ Shear Stress, Pa

 $\dot{\gamma}$ Shear Rate, sec -1

 μ_{app} Apparent Viscosity, Pa.Sec

 au_0 Yield Stress, Pa

k Consistency Factor

n Flow Behavior index

T Temperature, °C

E Activation Energy

 a_o Empirical Constant

 a_1 Empirical Constant

a₂ Empirical Constant

Abstract

Juice production is known to be one of the important and critical industries as it involves products that are delivered and consumed by people. Strict parameters should be maintained in order to deliver safe product from raw materials delivery and semi-finished product processing to end product handling. The demand for juice in Egypt has increased widely to call for new product innovations and concepts since it is a country with high potentials of market growth.

Upon processing juice, identifying the juice type whether it's high on fruit content, artificial fruit drink or juice mix is mandatory as it strongly assists in identifying the optimum processing parameters. Juice production schemes can differ depending on whether the starting point is production from juice concentrate or juice fruit.

The fluid behavior in each processing step starting from ingredients mixing up to heat treatment should be known as it serves in the ideal handling for the juice and maintaining the product quality. This results in providing premium juice for end consumer and can be studied through Rheology. Rheology is the study of flow behavior and deformation of fluid upon applying certain force and analyzing the flow behavior in response to time, temperature change and deformation

The purpose of this thesis is to study the fluid behavior of both Mango and Guava juice in preliminary mixing, product homogenization and final heat treatment. For both juices, the rheological study was conducted from range 10-105 °C using Brookfield Rheometer with speed of spindle ranging from 10-100 rpm.

For Mango Juice, fruit content was constant at 15%. After mixing at both temperature 10 & 18 °C the fluid behavior follows a Bingham fluid. the increase in temperature from 10 to 18 °C has had for effect to decrease the yield stress and the limiting viscosity. After homogenizing at temperature range (50-103 °C), temperatures a shear thinning behavior was observed approaching a zero viscosity at infinite shear rate. A thixotropic behavior can be observed as evidenced by the presence of a hysteresis loop. Finally, the cooling step for mango juice at temperature range (65-20°C) gave the straight lines indicating prevalence of Bingham behavior with a decrease in the consistency index (Limiting viscosity). While also observing a thixotropic behavior as evidenced by the presence of a hysteresis loop.

For Guava Juice, fruit content was constant at 25%. After mixing at both temperature 10 & 18 °C the fluid behavior follows a Shear Thinning behavior. After homogenization At temperature range (50-80 °C), The best fits of data showed then displaying Bingham fluids behavior approaching limiting viscosities at infinite shear rate. A thixotropic behavior can be observed as evidenced by the presence of a hysteresis loop. Finally, the cooling step at temperature range (65-20°C) gave the straight lines indicating prevalence of Bingham behavior with general decrease in yield stress. While also observing a thixotropic behavior as evidenced by the presence of a hysteresis loop.

Chapter 1: Introduction

Juice production is known to be one of the important and critical industries as it involves products that are delivered and consumed my people. Strict parameters should be maintained in order to deliver safe product from raw materials delivery and semi-finished product processing to end product handling.

Currently, diverse trends for juice mixes are available such as: juice and milk mix, fruit and vegetable mix, culture drinks and healthy drinks. Some producers also advertise 100% natural juice that is not made from concentrate. For example, Cawtson Press juice range claims that it consists of pressed original fruits and vegetable blends with no added sugar, no sweeteners, no coloring and no preservatives. Likewise, healthy people range claims for its mango and acerola super fruit that it is a main source of antioxidants as it includes both vitamin C and vitamin E.

In 2012 -2013, Germany scored the highest in juice consumption worldwide and maintained almost the same consumption rate across EU region in 2016 according to Statista EU per capita consumptions in litres. [1] (Fig 1.1)

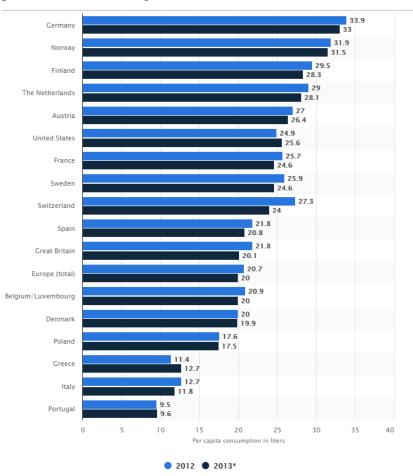


Figure 1-1 Juice Consumption Rate across EU in accordance with U.S