

Myeloperoxidase marker in pre-pubertal and pubertal obese adolescents and its relation with insulin resistance and lipid profile

Thesis

Submitted for fulfillment of Ph.D. degree in childhood studies Faculty of Postgraduate Childhood Studies

Submitted by

Eman Abd-El Aziz Mohamed Medany

M.B.BCH. 2004, M.SC Pediatrics 2011 Faculty of medicine, Ain shams University

Under Supervision of

Dr. Rehab Abdel-Kader Mahmoud

Professor of Pediatrics
Faculty of postgraduate childhood studies
Ain Shams University

Dr. Hanaa Hamdy Ahmed

Professor and Head of Hormones Department National Research Centre

Dr. Sahar Abd El Aziz Khairy

Professor of Pediatrics National Nutrition Institute

Dr. Inas Refaei EL- Alameey

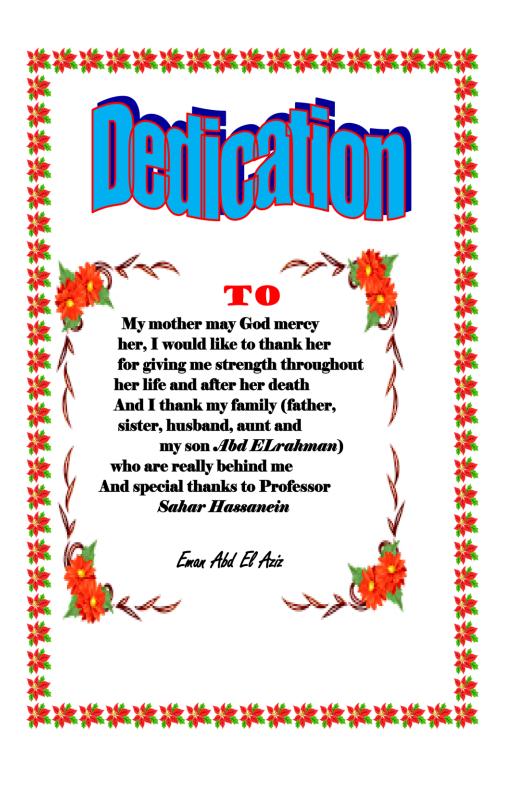
Assistant Professor of Health Department National Research Centre

Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgments

First, grace and foremost thanks to Allah for blessing this work until it has reached its end, as a part of his generous help throughout our life.


I would like to express my sincere gratitude and deepest thanks to **Prof. Rehab Abdel-Kader Mahmoud,** Professor of Pediatrics, Faculty of Postgraduate Childhood Studies, Ain Shams University, for her continuous guidance, supervision, kind encouragement, and support throughout the entire period of the study.

It is my pleasure to express my unlimited appreciation and respect to **Prof. Hanaa Hamdy Ahmed**, Professor and Head of Hormones Department, National Research Centre, for her continuous supervision, creative ideas and stimulating suggestion throughout this work. I shall always appreciate and remember your help.

I wish to thank **Professor Sahar Khairy**, Professor of Pediatrics, National Nutrition Institute, for her kind supervision in this work and for her kind help. I shall always remember your help.

I am also indebted to **Dr. Inas Refaei EL-Alameey**, Assistant Professor of Health Department - National Research Centre, for her constructive guidance, continuous support and thorough revision of this work till is reached this picture. I owe you the bulk of work you have offered me with a lot of patience and kindness.

Table of Contents

Subject	Page No.
Acknowledgement	
Table of abbreviation	
List of tables	iii
List of figure	v
Abstract	viii
Introduction	1
Aim of the Work	5
Review of Literature	
Chapter 1: Obesity in Children and Adolescents	6
Obesity	6
Physiology of weight control	7
Prevalence of obesity	11
Etiology of obesity	12
Assessment of childhood obesity	20
Complications of childhood obesity	25
Prevention of obesity	30
Management of obesity	33
Chapter 2: Myeloperoxidase (MPO)	38
Introduction	38
Structure of MPO	38
Function of MPO	44
Metabolic syndrome	51
Criteria of MS	53

Insulin resistance A hallmark of the metabolic	
syndrome	54
Prevalence of metabolic syndrome	55
Pathophysiological role of Myeloperoxidase in obesity	58
Relation of Myeloperoxidase and Blood Pressure	63
Pathophysiological role of Myeloperoxidase in ischemic heart disease.	66
Patients and Methods	68
Results	87
Discussion	128
Summary and Conclusions	143
Recommendations	147
Reference	148
Appendices	I
Arabic Summary	—

List of Abbreviations

Abbr.	Full-term
7001.	Juli- term
ACS	: Acute coronary syndrome
ACTH	: Adrenocorticotropic hormone.
AgRP	: Agouti- related peptide.
$\mathbf{A}\mathbf{N}$: Acanthosis nigricans
AO	: Abdominal obesity
ARC	: Arcuate nucleus.
BBB	: Blood-brain barrier.
BIA	: Bioelectric impedance assay
BMI	: Body mass index
CAD	: Coronary artery disease
CART	: Cocaine- and amphetamine-regulated transcript
CI	: Confidence interval.
CRP	: C- reactive protein
CT	: Computed tomography
CVD	: Cadiovascular diseases.
Cys 153	: Cysteine 153.
DA	: Diagnostic accuracy.
DBP	: Diastolic blood pressure
DEXA	: Dual – Energy X- ray absorptiometry
DM	: Diabetes mellitus
FBG	: Fasting blood glucose.
FDA	: Food and Drug Administration
GH	: Growth hormone.
HDL	: High density lipoprotein
HOCL	: Hypochlorous acid
HOMA	: Homeostatic model assessment
HOMA-IR	
IDF	: International Diabetes Federation
IGF - BP3	: Insulin like growth factor binding protein-3
IGF- 1	: Insulin like growth factor-1.
IR	: Insulin resistance.

LBM: Lean body mass.

LDL : Low density lipoprotein.Mc4r : Melanocortin 4 receptor.

MPO : Myeloperoxidase.

MRI : Magnetic resonance imaging

MS : Metabolic syndrome.

MSH : Melanocyte stimulating hormoneNETS : Neutrophil extracellular traps

NHANES: National Health and Nutrition Examination

Survey

NO : Nitric oxide

NPV : Negative Predictive value.

NPY : Neuropeptide Y. OB-R : Leptin receptor

OGTT : Oral glucose tolerance test
PCOS : Polycystic ovary syndrome
POMC : Pro- opiomelanocortin
PPV : Positive Predictive value.
PVN : Para-ventricular nucleus

QOL : Quality of life

ROS : Reactive oxygen speciesSBP : Systolic blood pressure

SCFE : Slipped capital femoral epiphysis.

SE : Standard error.SFT : Skin fold thickness

T2DM: Type 2 diabetes mellitus

TG : Triglyceride

TSH: Thyroid-stimulating hormoneVLDL: Very low density lipoprotein

W/H ratio : Waist hip ratio

WC : Waist circumference

WHO : World Health Organization

 α -MSH : α- melanocyte stimulating hormone.

List of Tables

Table No. Title Page No.

Table 1	BMI	21
Table 2	Approach to prevention of childhood	
	obesity	32
Table 3	W/H ratio	77
Table 4	Comparison between non-obese and obese	
	regarding demographic characteristics	87
Table 5	Comparison between the studied groups as	
	regards age and sex	88
Table 6	Comparison between non-obese and obese	
	regarding demographic, anthropometric	
	measures and blood pressure.	89
Table 7	Comparison between non-obese and obese	
	regarding laboratory findings	90
Table 8	Comparison between normal prepubertal	
	and obese prepubertal regarding	
	demographic, anthropometric measures and	
	blood pressure.	91
Table 9	Comparison between control prepubertal	
	and obese prepubertal regarding laboratory	
	findings.	92
Table 10	Comparison between control pubertal and	
	obese pubertal regarding demographic and	
	anthropometric	93
Table 11	Comparison between control pubertal and	
	obese pubertal regarding laboratory findings	94
Table 12	Comparison between obese prepubertal and	
	obese pubertal regarding demographic,	
	anthropometric characteristics and blood	
	pressure	95
Table 13	Comparison between obese prepubertal and	
	obese pubertal regarding laboratory findings	96

Table 14	Comparison between male and females	
	obese regarding age, anthropometric	
	measures and blood pressure	97
Table 15	Comparison between males and females	
	obese regarding laboratory findings	98
Table 16	Comparison between obese groups with and	
	without metabolic syndrome (MS) and	
	control group as regards age, anthropometric	
	and blood pressure.	99
Table 17	Comparison between cases group with and	
	without metabolic syndrome (MS) regarding	
	laboratory findings.	100
Table 18	Correlations of BMI Z- score among the	
	obese groups	101
Table 19	Correlations of W/H ratio among the obese	103
Table 20	Correlation of serum myeloperoxidase in	
	cases groups.	109
Table 21	Comparison between al groups regarding	
	anthropometric measures and blood pressure	
	among the studied groups	112
Table 22	Comparison between all groups as regard	
	lipid profile, fasting blood glucose, serum	
	insulin, insulin resistance, MPO and CRP.	116
Table 23	Comparison between cases with and without	
	metabolic syndrome (≥ 3criteria) regarding	
	MPO (pg/mL)	122
Table 24	Diagnostic performance of MPO in	
	differentiating obese from non-obese in	
	prepubertal and pubertal	123
Table 25	Diagnostic characteristics of serum MPO	
	cutoff points in differentiating obese from	
	control groups.	125
Table 26	Linear regression for risk factors affecting	
	serum MPO	126
Table 27	Linear regression for risk factors affecting	
	serum MPO in all obese	127

List of Figures

Figure No. Title Page No.

Fig. 1	Different levels of control of obesity	10
Fig. 2	Triceps skin fold	22
Fig. 3	Bioelectric impedance assay	24
		25
Fig. 4	Childhood obesity complications	
Fig. 5	The structure of myeloperoxidase	39
Fig. 6	The heme prosthetic group of	
	myeloperoxidase	42
Fig. 7	A schematic diagram of myeloperoxidase	43
Fig. 8	The IDF definition of the risk group and	
	metabolic syndrome in children and	
	adolescents	53
Fig. 9	Metabolic disorders associated with	
	abdominal adiposity speeds up morbidity-	
	mortality in adulthood	60
Fig. 10	Acanthosis nigricans	71
Fig. 11	Tanner staging	71
Fig. 12	Stadiometer	75
Fig. 13	Comparison between the studied groups as	
	regards age and sex	88
Fig.14	Correlation between BMI z-score with	
8	serum LDL among prepubertal obese.	102
Fig. 15	Correlation between BMI z-score with	-
	waist circumference among pubertal obese.	102
Fig. 16	Correlation between waist /hip ratio and	102
116.10	DBP among all obese groups	104
Fig. 17	Correlation between waist /hip ratio and	104
1 1g. 1/	serum insulin among all obese groups	104
E: a 10		104
Fig.18	Correlation between waist /hip ratio and	105
E: 10	HOMA- IR among all obese groups	105
Fig.19	Correlation between waist /hip ratio and	105
	serum MPO among all obese groups	105

Fig. 20	Correlation between waist /hip ratio and	
	serum HDL in obese prepubertal group.	106
Fig. 21	Correlation between waist /hip ratio and	
	serum MPO in obese prepubertal group.	106
Fig. 22	Correlation between waist /hip ratio and	
	serum insulin in obese pubertal group.	107
Fig. 23	Correlation between waist /hip ratio and	
	HOMA- IR in obese pubertal group.	107
Fig. 24	Correlation between waist /hip ratio and	
	serum MPO in obese pubertal group.	108
Fig. 25	Correlation between serum MPO and waist	
	/hip ratio in obese prepubertal group.	110
Fig. 26	Correlation between serum MPO and waist	
	/hip ratio in obese pubertal group.	110
Fig.27	Correlation between serum MPO and	
	insulin among obese prepubertal group.	111
Fig. 28	Correlation between serum MPO and	
	insulin among obese pubertal group.	111
Fig. 29	Comparison of BMI- Z score among the	
	studied groups	113
Fig. 30	Comparison of waist circumferences	
	among the studied groups	113
Fig. 31	Comparison of hip circumferences among	
	the studied groups	114
Fig. 32	Comparison of waist /hip ratio among the	
	studied groups	114
Fig. 33	Comparison of systolic BP z-score among	
	the studied groups	115
Fig. 34	Comparison of diastolic BP z-score	
	among the studied groups	115
Fig. 35	Comparison of serum cholesterol among	–
	the studied groups	117
Fig. 36	Comparison of serum triglycerides among	–
	the studied groups	117
Fig. 37	Comparison of serum LDL among the	4.10
	studied groups	118

Fig. 38	Comparison of serum HDL among the	
	studied groups	118
Fig. 39	Comparison of FBG among the studied	
_	groups	119
Fig. 40	Comparison of serum insulin among the	
	studied groups	119
Fig. 41	Comparison of HOMA- IR among the	
	studied groups	120
Fig. 42	Comparison of CRP among the study	
	groups	120
Fig. 43	Comparison of MPO among the study	
	groups.	121
Fig.44	Comparison of serum MPO in obese group	
	with metabolic syndrome compared to	
	obese group without metabolic syndrome.	122
Fig. 45	Roc curve for differentiating of serum	
	MPO cutoff points between prepubertal	
	obese group from control groups	124
Fig. 46	Roc curve for differentiating of serum	
	MPO cutoff points between pubertal obese	
	group from control groups	124

Abstract

Background: Childhood obesity is a condition characterized by the excessive accumulation and storage of fat in the body which negatively affects a child's health. It predisposes to insulin resistance and type 2 diabetes, hypertension, hyperlipidemia, liver, renal and cardiovascular diseases. Obese youth are more likely to have risk factors such as high cholesterol and blood pressure. Aim: To assess the serum MPO levels in obese pre-pubertal children and obese pubertal adolescents and to seek for the correlation between MPO serum level with lipid profile, insulin resistance and criteria of metabolic syndrome. Subjects and Methods: divided into two groups of subjects were enrolled in the current study, case (obese) group: fifty children subdivided into 25 prepubertal obese and 25 pubertal obese and control group (normal): twenty five healthy- non obese children divided into 13 pre-pubertal and 12 pubertal group. Subjects with age and sex matched served as control. All participants were subjected to full medical history, anthropometric measurements, clinical examination, blood pressure and laboratory investigations for measuring MPO, lipid panel, CRP, fasting insulin and fasting glucose serum levels. Results: Obese groups experienced significant elevation in BMI, W/H ratio, blood pressure, cholesterol, TG, LDL, fasting insulin and IR levels. However, HDL showed significant reduction in obese groups versus the non -obese control group. MPO revealed significant enhancement in obese pre-pubertal and pubertal groups relative to the non obese control group. MPO positively correlated with W/H ratio, insulin and insulin resistance. According to the receiver-operating characteristics (ROC) curve, MPO seemed to be a good predictor for obesity in pre- pubertal and pubertal individuals as the ROC curve showed cut-off points ranged from 480.0 for pubertal adolescents and 490.0 for prepubertal children. Conclusion: MPO could be considered as a good marker for insulin resistance and metabolic syndrome associated with obesity in pre-pubertal and pubertal populations.

Keywords: Obesity, Metabolic syndrome, Myeloperoxidase, Prepubertal children, Pubertal adolescents.

Introduction

Obesity is the most prevalent nutritional disorder among children and adolescents. It represents the most serious public health worldwide problem of the present century. In the United States about 21-24% of American children and adolescents are overweight and another 16-18% is obese (*Ogden et al.*, 2012). As the prevalence of obesity increased, so did the prevalence of the comorbidities associated with obesity as insulin resistance and type 2 diabetes, hypertension, hyperlipidemia, liver, renal disease and reproductive dysfunction. Also increases the risk of adult-onset obesity and cardiovascular disease. For these, it is important that health care providers diagnose overweight and obese children so that counseling and treatment can be provided (*GBD et al.*, 2015).

Childhood obesity was defined according to the international obesity taskforce (*Cole et al.*, 2000) and based on body mass index (BMI) according to criteria from the World Health Organization (*WHO*, 2007).

Lipid profile is a blood test done to assess the status of fat metabolism in the body and is important in heart diseases. Cholesterol- protein package is called a lipoprotein. Lipoproteins are compounds containing fat and proteins and