BIOACTIVE LIPIDS IN MILK AND SOME DAIRY PRODUCTS

By

MOHAMED IBRAHIM AHMED SALAMA

B.Sc. Agric. Sci. (Food and Dairy Industries), Menoufya University, 2011

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Degree of

MASTER OF SCIENCE in Agricultural Sciences (Dairy Science and Technology)

> Department of Food Science Faculty of Agriculture Ain Shams University

BIOACTIVE LIPIDS IN MILK AND SOME DAIRY PRODUCTS

By

MOHAMED IBRAHIM AHMED SALAMA

B.Sc. Agric. Sci. (Food and Dairy Industries), Menoufya University, 2011

Under the supervision of

Dr. Laila Badawy Abd El Hamid

Prof. Emeritus of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University, (Principal Supervisor)

Dr. Abd El-Hamid Abo El-Hassan Asker

Prof. Emeritus of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Dr. Hayam Mohamed Abbas Ramadan

Researcher Prof. Emeritus of Dairy Science and Technology, Dairy Department, National Research Centre

ABSTRACT

Mohamed Ibrahim Ahmed Salama. "Bioactive Lipids in Milk and some Dairy Products". Unpublished M.Sc. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2018

The aim of this work was to monitor some of the bioactive lipids content in Egyptian buffalo and goat milk as affected by species, seasonal variations and some technological dairy steps. The studied-bioactive lipids are butyric acid, conjugated linoleic acid, odd and branched chain fatty acids, phospholipids, and *trans* fatty acids. Gross chemical composition and conjugated dienes and trienes acids of milk samples were also previously evaluated. Regarding to the fatty acids profiles as well as total polar lipids and phospholipids classes of the types of milk samples as well as buffalo milk fatty products and their by-products were estimated by modern techniques such as GC-MS and ³¹P-NMR apparatus.

The results indicated that milk samples in winter season contained higher values of gross composition for both buffalo and goat milk than summer season, where the green fodder is in winter.

Regarding to the results of studied-bioactive lipids, it is noticed that goat milk is rich in conjugated linoleic acid and phospholipids classes especially sphingomyelin as compared with buffalo milk. At the same time, buffalo milk had higher contents of butyric acid and odd-branched chain fatty acids (OBCFAs) than goat milk.

Moreover, the technological steps had a clear effective influence on the distribution of all bioactive lipids in milk products, especially CLA and phospholipids. Therefore, phospholipids are the most abundant in aqueous phase such as butter milk and skim milk when compared to cream and butter.

Regarding to the fractionation of butter oil, it is noticed that liquid fraction at 15° C (L_{15}) had a higher content of CLA as well conjugated diene and triene fatty acids, while solid fraction at 25° C (S_{25}) contained a higher content of total OBCFAs when compared to all other fractions.

Key words: Buffalo milk, goat milk, bioactive lipids, conjugated linoleic acid, odd and branched chain fatty acids, polar lipids, phospholipids and *trans* fatty acids.

ACKNOWLEDGMENT

All praises are due to God, who blessed me with those kind professors and colleagues, whom gave me the support to produce this thesis.

I would like to express my deep and sincere gratitude to my supervisor **Prof. Dr. laila Badawy Abd El Hamid,** Prof. Emeritus of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University, for her supervision, her patience, for her incredible and valuable assistance, continuous encouragement, valuable advice, constructive comments and her guidance in writing the thesis.

I am greatly indebted to **Prof. Dr. Abd El-Hamid Abo El-Hassan Asker,** Prof. Emeritus of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University, for his continuous supervision and for the extremely good research and aid facilities. He supported me with constructive supervision, valuable discussion and criticism throughout the course of this thesis.

I would like to express my sincere gratitude to **Prof. Dr. Hayam Mohamed Abbas Ramadan**, Prof. Emeritus of Dairy Science and Technology, Department of Dairy Science, National Research Centre, for her kind supervision, suggestion, valuable encouragement, constructive comments, valuable discussion and criticism as well as fruitful effort in writing this thesis.

Deep thanks and appreciation to **Dr. Jihan Mohamed Kassem** Associate Prof. of Dairy Science and Technology, Department of Dairy Science, National Research Centre, for her kind direct supervision; I really appreciate her valuable role in estimation of samples in Poland.

Also, I would like to express many thanks for **Prof. Dr. Antoni Szumny**, Head of the Chemistry Department, Wroclaw University of Environmental and Life Sciences, Poland, for carrying out and facility of

samples measurement within the agreement signed between the Egyptian Academy of Scientific Research and Technology and the Polish Academy of Sciences.

Great Thanks for **all staff members, colleagues and secretary** of Dairy Department, National Research Centre for continuous help and encouragement through the work.

Words fail me to express my appreciation to **my parents** for their support and help me through all my life and my study, as well as to **my brothers, sister and all friends** for their support in all my life.

CONTENTS

LIST OF TABLES	V
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	IX
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Definitions of bioactive lipids	3
2.2. Classification of bioactive lipids in milk	4
2.2.1. Butyric acid, short chain fatty acids and their health	
benefits	4
2.2.2. Conjugated linoleic acid and its health benefits	5
2.2.3. Odd and branched chain fatty acids and their health	
benefits	7
2.2.4. Phospholipids and their health benefits	8
2.2.5. <i>Trans</i> fatty acids and their healthy effects	10
2.3. Factors affecting the bioactive lipids contents in milk and its	
products	12
2.3.1. Effect of dietary factors and seasonal variations	12
2.3.1.1. Butyric acid	12
2.3.1.2. Conjugated linoleic acid	13
2.3.1.3. Odd and branched chain fatty acids	15
2.3.1.4. Phospholipids	17
2.3.1.5. <i>Trans</i> fatty acids	18
2.3.2. Effect of breed and species	19
2.3.2.1. Butyric acid	19
2.3.2.2. Conjugated linoleic acid	20
2.3.2.3. Odd and branched chain fatty acids	21
2.3.2.4. Phospholipids	22
2.3.2.5. <i>Trans</i> fatty acids	23
2.3.3. Effect of technological steps	23
2.3.3.1. Conjugated linoleic acid	

2.3.3.2. Phospholipids	25
3. MATERIALS AND METHODS	27
3.1. MATERIALS	27
3.1.1. Raw milk	27
3.1.2. Cream, skim milk, butter and butter milk	27
3.1.2.1. Cream and skim milk	27
3.1.2.2. Butter and butter milk	27
3.1.3. Fractionation of butter oil	28
3.1.4. Reagents	28
3.2. METHODS	28
3.2.1. Gross composition and pH values of milk	28
3.2.2. Extraction of lipids and phospholipids	29
3.2.3. Fatty acid parameters	29
3.2.3.1. Determination of conjugated diene and treine contents	29
3.2.3.2. Determination of fatty acid profile	30
3.2.3.2.1. Preparation of fatty acids methyl esters	30
3.2.3.2.2. Determination of fatty acids by GC-MS apparatus	30
3.2.4. Determination of phospholipids classes	31
3.2.4.1. Preparation of phospholipid samples	31
3.2.4.2. Determination of phospholipid classes by ³¹ P-NMR	31
4. RESULTS AND DISCUSSION	33
4.1. Bioactive lipids in buffalo and goat milk as affected by species	
and seasonal variation	33
4.1.1. Gross composition and pH value of buffalo and goat milk during	
summer	33
4.1.2. Gross composition and pH value of buffalo and goat milk during winter	34
4.1.3. Butyric acid and short chain fatty acids of buffalo and goat milk during summer	35
4.1.4. Butyric acid and short chain fatty acids of buffalo and goat milk during winter	36
4.1.5. Conjugated diene and triene fatty acids of buffalo and goat milk during summer	38
4.1.6. Conjugated diene and triene fatty acids of buffalo and goat milk	

4.1.7. Conjugated linoleic acid and its isomers of buffalo and goat milk
during summer
4.1.8. Conjugated linoleic acid and its isomers of buffalo and goat milk
during winter.
4.1.9. Odd and branched chain fatty acids of buffalo and goat milk during summer
4.1.10. Odd and branched chain fatty acids of buffalo and goat milk
during winter
4.1.11. Total polar lipids of buffalo and goat milk during summer and winter
4.1.12. Phospholipids classes of buffalo and goat milk during summer
4.1.13. Phospholipids classes of buffalo and goat milk during winter
4.1.14. <i>Trans</i> fatty acids of buffalo and goat milk during summer
4.1.15. <i>Trans</i> fatty acids of buffalo and goat milk during winter
4.2. Distribution of bioactive lipids in fatty dairy products and their
by-products as affected by the technological steps
4.2.1. Bioactive lipids in buffalo cream and butter and their by-
products
4.2.1.1. Butyric acid and short chain fatty acids
4.2.1.2. Conjugated diene and triene fatty acids
4.2.1.3. Conjugated linoleic acid and its isomers
4.2.1.4. Odd and branched chain fatty acids
4.2.1.5. Total polar lipids
4.2.1.6. Phospholipids classes
4.2.1.7. <i>Trans</i> fatty acids
4.2.2. Bioactive lipids in buffalo butter-oil and its fractions
4.2.2.1. Butyric acid and short chain fatty acids
4.2.2.2. Conjugated diene and triene fatty acids
4.2.2.3. Conjugated linoleic acid and its isomers
4.2.2.4. Odd and branched chain fatty acids
4.2.2.4. Odd and branched chain fatty acids
Ž

7. APPENDIX	
8. ARABIC SUMMARY	

LIST OF TABLES

No		Page
1	Gross composition (%) and pH value of buffalo and goat	
	milk during summer season	33
2	Gross composition (%) and pH value of buffalo and goat	
	milk during winter season	34
3	Butyric and short chain fatty acids contents (as % of total	
	fatty acids) of buffalo and goat milk during summer season	35
4	Butyric and short chain fatty acids contents (as % of total	
	fatty acids) of buffalo and goat milk during winter season	37
5	Total conjugated diene (CDA) and triene (CTA) fatty acids	
	contents (as % of total fatty acids) of buffalo and goat milk	
	during summer season	38
6	Total conjugated diene (CDA) and triene (CTA) fatty acids	
	contents (as % of total fatty acids) of buffalo and goat milk	
	during winter season	40
7	Conjugated linoleic acid and its isomers contents (as % of	
	total fatty acids) of buffalo and goat milk during summer	
	season	41
8	Conjugated linoleic acid and its isomers contents (as % of	
	total fatty acids) of buffalo and goat milk during winter	
	season.	43
9	Odd and branched chain fatty acids contents (as % of total	
	fatty acids) of buffalo and goat milk during summer season	45
10	Odd and branched chain fatty acids contents (as % of total	
	fatty acids) of buffalo and goat milk during winter season	47
11	Total polar lipids contents (g/100g fat) of buffalo and goat	
	milk during summer and winter season	49
12	Phospholipid fractions (as % of total phospholipids) of	
	buffalo and goat milk during summer season	50
13	Phospholipid fractions (as % of total phospholipids) of	
	buffalo and goat milk during winter season	52

14	Trans fatty acids contents (as % of total fatty acids) of	
	buffalo and goat milk during summer season	5.
15	Trans fatty acids contents (as % of total fatty acids) of	
	buffalo and goat milk during winter season	5:
16	Butyric and short chain fatty acids contents (as % of total	
	fatty acids) of buffalo cream and butter and their by-products	5'
17	Total conjugated diene (CDA) and triene (CTA) fatty acids	
	contents (as % of total fatty acids) of buffalo cream and	
	butter and their by-products	5
18	Conjugated linoleic acid and its isomers contents (as % of	
	total fatty acids) of buffalo cream and butter and their by-	
	products	5
19	Odd and branched chain fatty acids contents (as % of total	
	fatty acids) of buffalo cream and butter and their by-	
	products	6
20	Total polar lipids contents (g/100g fat) of buffalo cream and	
	butter and their by-products	6.
21	Phospholipid fractions (as % of total phospholipids) of	
	buffalo cream and butter and their by-products	6
22	Trans fatty acids contents (as % of total fatty acids) of	
	buffalo cream and butter and their by-products	6
23	Butyric and short chain fatty acids contents (as % of total	
	fatty acids) of buffalo butter-oil and its fractions	6
24	Total conjugated diene (CDA) and triene (CTA) fatty acids	
	contents (as % of total fatty acids) of buffalo butter-oil and	
	its fractions	6
25	Conjugated linoleic acid and its isomers contents (as % of	
	total fatty acids) of buffalo butter-oil and its fractions	7
26	Odd and branched chain fatty acids contents (as % of total	
	fatty acids) of buffalo butter-oil and its fractions	72
27	Trans fatty acids contents (as % of total fatty acids) of	
	buffalo butter-oil and its fractions	74

LIST OF FIGURES

No		Page
1	Butyric and short chain fatty acids contents (as % of total	
	fatty acids) of buffalo and goat milk during summer	36
2	Butyric and short chain fatty acids contents (as % of total	
	fatty acids) in buffalo and goat milk during winter	37
3	Total conjugated diene and triene fatty acids contents (as %	
	of total fatty acids) of buffalo and goat milk during summer	39
4	Total conjugated diene and triene fatty acids contents (as %	
	of total fatty acids) of buffalo and goat milk during winter	40
5	Conjugated linoleic acid and its isomers contents (as % of	
	total fatty acids) of buffalo and goat milk during summer	42
6	Conjugated linoleic acid and its isomers contents (as % of	
	total fatty acids) of buffalo and goat milk during winter	43
7	Phospholipid fractions (as % of total phospholipids) of	
	buffalo and goat milk during summer	51
8	Phospholipid fractions (as % of total phospholipids) in	
	buffalo and goat milk during winter	52
9	Trans fatty acids contents (as % of total fatty acids) of	
	buffalo and goat milk during summer	54
10	Trans fatty acids contents (as % of total fatty acids) of	
	buffalo and goat milk during winter	55
11	Butyric and short chain fatty acids contents (as % of total	
	fatty acids) of buffalo cream, butter and their by-products	57
12	Total conjugated diene and triene fatty acids contents (as %	0,
	of total fatty acids) of buffalo cream, butter and their by-	
	products	58
13	Conjugated linoleic acid and its isomers contents (as % of	
10	total fatty acids) of buffalo cream, butter and their by-	
	products	60
14	Total odd and branched chain fatty acids contents (as % of	00
1.4	total fatty acids) of buffalo cream, butter and their by-	
	total fatty actus, of buffato cream, butter and them by-	