Frequency of BAP1 Gene Mutation in Egyptian Patients with Advanced Sporadic Malignant Pleural Mesothelioma and its Correlation with Clinical Outcome

The Thesis

Submitted for the fulfillment of the Master Degree in Pharmaceutical Sciences (Clinical Pharmacy)

Submitted By:

Raghda Shehab Eldin Abdel-Lateef

B. Pharm Sc., Ain Shams University Central Administration for Pharmaceutical Affairs Ministry of Health

Under Supervision of

Prof. Dr. Nagwa Ali Sabri

Professor and Head of Clinical Pharmacy Department Faculty of Pharmacy Ain Shams University

Prof. Dr. Ahmed El-Saied El-Bastawisy

Professor of Medical Oncology National Cancer Institute Cairo University

Prof. Dr. Abeer Ahmed Bahnasy

Professor of Pathology National Cancer Institute Cairo University

Faculty of pharmacy Ain Shams University 2018

Acknowledgement

First and foremost, thanks are due to Allah, the most Gracious and the most merciful

I would like to express my sincere, my deep appreciation and gratitude to **Prof. Dr. Nagwa Ali Sabri,** Head of Clinical Pharmacy Department-Faculty of Pharmacy-Ain Shams University for her sincere help, valuable guidance and continuous support in completing this work.

I am very grateful to **Prof. Dr. Ahmed El-Saied El-Bastawisy**, Professor of Medical Oncology, National cancer Institute, Cairo University for his great assistance, precious advice and valuable guidance in completing this work

I am greatly **indebted to Prof. Dr. Abeer Ahmed Bahnasy**, Professor of Pathology, National cancer Institute, Cairo University for her kind help, guidance and follow up throughout the whole work.

My deepest thanks, love and appreciation to **Dr.Maha yehia**, MD clinical oncology, National cancer Institute, Cairo University for her sincere help, tremendous support and continuous encouragement.

I am deeply grateful to **Dr.Omnia Abo-Elazm**, National cancer Institute, Cairo University for her kind help and generous participation in conducting statistics.

Many special thanks and deep gratitude for my beloved parents, family and best friends for their continuous support and encouragement.

I am also highly grateful and appreciating every patient has been participated in this study.

Content	Page
List of Abbreviations	I-III
List of Tables	VI
List of Figures	V-VII
Abstract	VIII-IX
Review of Literature	1-32
Malignant Pleural Mesothelioma	1-22
Definition	
Epidemiology	
Risk and Prognostic factors	
Etiology and Pathophysiology	
Clinical Presentation and Diagnosis	
Staging	
Treatment	
Ubiquitylation and Deubiquitylation and their role in DNA	23-25
damage repair	
BRCA associated protein 1 (BAP1)	26-32
Definition	
Function of BAP1	
BAP1 mutations and its effect on MPM patients	
Aim of the Study	33
Patients and Methods	34-42
Results	43-78
Discussion	79-86
Conclusion	87
Recommendations	88
Summary	89-90
References	91-106
Appendices	107-115
Arabic summary	116-118

List of abbreviations

ABL	Abelson Murine Leukemia.
ALT	Alanine Amino-Transferase.
ANC	Absolute Neutrophil Count
ASS-1	Argino-Succinate Synthetase-1
AST	Aspartate Amino-Transferase.
AJCC	American Joint Committee on Cancer
BAP1	BRCA Associated Protein 1
BARD1	BRCA-Associated RING Domain 1
BCR	Breakpoint Cluster Region protein
BID	Bis In Die (twice daily)
CALGB	Cancer and Leukaemia Group B
СВС	Complete Blood Count
CD	Cluster of Differentiation.
CDKN2A/B	Cyclin-Dependent Kinase 2A/B
CEA	Carcino-Embryonic Antigen
CK	Cyto-Keratin
CM	Cutaneous Melanoma
CR	Complete Responce
CT	Computed Tomography
CTCAE	NCI common Terminology Criteria for Adverse Events
CTC	Circulating Tumer Cells
CTLA-4	Cytotoxic T Lymphocyte-Associated protein
CY 3	Cyanine Dye 3
DAPI	Di-Amidino-2-Phenyl-Indole plus
DDR	DNA Damage Response
DNA	Deoxy ribo Nucleic Acid
DSBs	Double Strand Breaks
DUBs	Debiquitinating enzymes
EBUS	Endotracheal Ultrasonography
ECOG	Eastern Cooperative Oncology Group
EDTA	Ethylene-Diamine-Tetra-Acetic acid
EGRF	Epidermal Growth Factor Receptor
EORTC	The European Organization for Research and Treatment of Cancer
EPD	Extended Pleurectomy and Decortication
EPP	Extra-Pleural Pneumonectomy

EZH2	Enhancer of Zeste Homolog 2
FAK	Focal Adhesion Kinase
FASL	FAS Ligand
FDG PET-CT	Fluoro- D-glucose integrated with Positron Emission
	Tomography and Computed Tomography
FGFR	Fibroblast Growth Factor Receptor
FHA	Fork-Head Associated Domain
FISH	Fluorescence In Situ Hybridization
HBM	HCF-Binding Motif
HCF-1	Host Cell Factor-1
HDAC	Histone Deacetylase
hTNF	Human Tumor Necrosis Factor
ICL	Interstrand cross-link
IF	Immuno-Fluorescence
IHC	Immuno- Histochemistry
IMIG	International Mesothelioma Interest Group
IMRT	Intensive Modulated Radiation Therapy
IV	Intra-Venous
LDH	Lactate Dehydrogenase enzyme
MM	Malignant Mesothelioma.
MPM	Malignant Pleural Mesothelioma
MTAP	Methyl-Thio-Adenosine Phosphorylase
mTOR	Mammalian Target of Rapamycin
MJDs	Machado-Joseph domain-containing proteins
NCCN	National Comprehensive Cancer Network
NCI	National Cancer Institute
NF 2	Neuro-Fibromin 2
N/L ratio	Neutrophil/Lymphocyte ratio
NLS	Nuclear Localization Signal
OGT	O-linked N-acetyl -Glucosamine Transferase
OS	Overall Survival
OTUs	Otubain Domain-containing Proteases
PBS	Phosphate-Buffered Saline
PC	Pemetrexed plus Cisplatin
PCB	Pemetrexed plus Cisplatin plus Bevacizumab
PCNA	Proliferating Cell Nuclear Antigen

PDGFRPlatelet Derived Growth Factor ReceptorPD-L1Programmed Cell Death Ligand-1PDTPhoto Dynamic TherapyPET-CTPositron Emission Tomography and Computed Tomograp	
PDT Photo Dynamic Therapy	
1	
PET-CT Positron Emission Tomography and Computed Tomography	
	ohy
PFS Progression Free Survival	
PFTs Pulmonary Function Tests	
PO Per oral	
PARP Poly ADP Ribose Polymerase	
PR Partial Responce	
PRC Polycomb Repressive Complex	
PR-DUB Polycomb Group Repressive Deubiquitinase complex	
PS Performance Status	
PTM Protein Post-Translational Modification	
RCC Renal Cell Carcinoma	
RECIST Response Evaluation Criteria in Solid Tumors	
RMH Reactive Mesothelial Hyperplesia	
RT Radio Therapy	
SAHA Suberoyl-Anilide -Hydroxamic Acid	
SD Stable Disease	
SMRP Soluble Mesothelin Related Peptide	
SV40 Simian Vacuolating Virus 40	
TILs Tumer Infiltrating Lymphocytes	
TMT Tri-Modality Treatment	
TOPBP1 Topoisomerase Binding Partner 1	
TTF-1 Thyroid Transcriptin Factor	
UBDs Ubiquitin-Binding Domains	
UCHs Ubiquitin C-terminal Hydrolases	
UM Uveal Melanoma	
UNL Upper Normal of Limit	
UPS Ubiquitin-Proteasome System	
USP Ubiquitin Specific Proteases	
VATS Video Assisted Thoracic Surgery	
VEGF Vascular Endothelial Growth Factor	
WT-1 Wilms Tumor protein	
YY1 Yin Yang 1	

List of Tables

Number	Table	Page
Table (1)	Polymerase Chain Reaction (PCR) Primer Sequences.	42
Table (2)	Patient Clinicopathological Characteristics.	44
Table (3)	Chemotherapeutic Treatment.	45
Table (4)	The Commonly Reported Chemotherapy Related Toxicities.	46
Table (5)	The Most Common Detected BAP1 Mutations.	47
Table (6)	The Relation between BAP1 Gene Mutation and the	58
	Clinicopathological Characteristics of the Malignant Pleural	
	Mesothelioma patients (Age, Sex, Asbestos Exposure,	
	Smoking, Histology Subtype, Disease Stage, Occupation	
	distribution and Incidence of Metastasis).	
Table (7)	The Relation between BAP1 Gene mutation and The Overall	59
	Clinical Benefit after First Line Treatment.	
Table (8)	The Relation between BAP1 Gene Mutation and The Overall	60
	Clinical Benefit after Second Line Treatment.	
Table (9)	Progression Free Survival (PFS) after First Line Treatment at	61
	6, 12 and 24 months.	
Table (10)	Progression Free Survival (PFS) after Second Line	62
	Treatment at 6 and 12 months.	
Table (11)	Progression Free Survival (PFS) after First Line Treatment at	63
	6, 12 and 24 months for Mutated and Non-Mutated Groups.	
Table (12)	Progression Free Survival (PFS) after Second Line	64
	Treatment at 6 and 12 months for Mutated and Non-Mutated	
	Groups.	
Table (13)	The Relation between Median PFS after First Line	70
	Treatment and Clinicopathological Characteristics.	
Table (14)	The Overall Survival (OS) at 6, 12 and 24 months.	71
Table (15)	The Overall Survival (OS) at 6 and 12 months for Mutated	72
	and Non-Mutated Groups.	
Table (16)	The Relation between The Overall Survival (OS) and	78
	Clinicopathological Characteristics of the patients.	

List of Figures

Number	Figure	Page
Figure (1)	Simplified illustration of the major protein players involved	24
	in ubiquitin signalling following DSB induction. Horizontal	
	lines represent DNA. P, phosphorylation; Ub,	
	ubiquitylation; Me, methylation. Protein X denotes	
	unknown protein	
Figure (2)	BRCA associated protein 1 (BAP1) structure	26
Figure (3)	Simplified illustration of BAP1 function	27
Figure (4)	Simplified illustration of different BAP1 gene mutations	32
Figure (5)	Detailed flow diagram of the study.	41
Figure (6)	Frequency of BAP1 Gene Mutation in MPM patients.	47
Figure (7)	The association between BAP1 mutation and BAP1 protein	48
	expression	
Figure (8)	The Mean Age values in the Tested Groups.	49
Figure (9)	The Frequency (n) of Age Groups and Mutation type	50
Figure (10)	The Frequency (n) of Gender and Mutation type.	50
Figure (11)	The Frequency (n) of asbestos exposure history versus	51
	mutation type	
Figure (12)	The Frequency (n) of smoking history versus mutation	52
Figure (13)	The Frequency (n) of histology type and mutation	52
Figure (14)	The Frequency (n) of disease stage and mutation	53
Figure (15)	The Frequency (n) of Occupation Distribution and Mutation	54
Figure (16)	The Frequency (n) of Metastasis Incidence and Mutation	55
Figure (17)	The Frequency (n) of lung metastasis incidence and	56
	mutation	
Figure (18)	The Frequency (n) of supraclavicular lymph node	57
	metastasis incidence and mutation.	
Figure (19)	The Frequency (n) of organ metastasis incidence and	57
	mutation.	
Figure (20)	The Percentage (%) of the overall clinical benefit after first	59
	line treatment and BAP1 mutation.	
Figure (21)	The Percentage (%) of the Overall Clinical Benefit after	60
	Second Line Treatment and BAP1 Mutation	
Figure (22)	The Progression Free Survival (PFS) after First Line	61
	Treatment at different time intervals using Kaplan Meir	

	Curves.	
Figure (23)	The Progression Free Survival (PFS) after Second Line	62
	Treatment at different time intervals using Kaplan Meir	
	Curves.	
Figure (24)	The Progression Free Survival (PFS) after First Line	63
	Treatment at different time intervals for each Tested Group	
	using Kaplan Meir Curves.	
Figure (25)	The Progression Free Survival (PFS) after Second line	64
	Treatment at different time intervals for each Tested Group	
	using Kaplan Meir Curves.	
Figure (26)	The Progression Free Survival (PFS) after First Line	65
	Treatment at different time intervals for each Tested Age	
	Group using Kaplan Meir Curves.	
Figure (27)	The Progression Free Survival (PFS) after First Line	66
	Treatment at different time intervals in Relation to the Sex	
	of patients using Kaplan Meir Curves.	
Figure (28)	The Progression Free Survival (PFS) after First Line	66
	Treatment at different time intervals for each Tested	
	Groups in Relation to Asbestos Exposure using Kaplan	
	Meir Curves.	
Figure (29)	The Progression Free Survival (PFS) after First Line	67
	Treatment at different time intervals for each Tested	
	Histological Subtypes using Kaplan Meir Curves.	_
Figure (30)	The Progression Free Survival (PFS) after First Line	68
	Treatment at different time intervals for Stage III and IV	
	using Kaplan Meir Curves.	
Figure (31)	The Progression Free Survival (PFS) after First Line	68
	Treatment at different time intervals for Smokers and Non-	
T: (22)	Smokers using Kaplan Meir Curves.	
Figure (32)	The Progression Free Survival (PFS) after First Line	69
	Treatment at different time intervals for each Tested Group	
F: (22)	in Relation to Occupation using Kaplan Meir Curves.	7.1
Figure (33)	The Overall Survival (OS) at different time intervals using	71
F: (2.1)	Kaplan Meir Curves.	70
Figure (34)	The Overall Survival (OS) at different time intervals for	72
F: (0.5)	each Tested Group using Kaplan Meir Curves.	7.0
Figure (35)	The Overall Survival (OS) at different time intervals for	73

	each tested Age group using Kaplan Meir Curves.	
Figure (36)	The Overall Survival (OS) at different time intervals in	74
	Relation to Sex using Kaplan Meir Curves.	
Figure (37)	The Overall Survival (OS) at different time intervals for	74
	each Tested Groups Regarding Asbestos Exposure using	
	Kaplan Meir Curves.	
Figure (38)	The Overall Survival (OS) at different time intervals for	75
	each Tested Histology Subtypes using Kaplan Meir Curves.	
Figure (39)	The Overall Survival (OS) at different time intervals for	76
	Stage III versus Stage IV using Kaplan Meir Curves.	
Figure (40)	The Overall Survival (OS) at different time intervals for	76
	Smokers and Non-smokers using Kaplan Meir Curves.	
Figure (41)	The Overall Survival (OS) at different time intervals for	77
	each Studied Group in Relation to Occupation using Kaplan	
	Meir Curves.	

Abstract

Background:

Malignant Pleural Mesothelioma (MPM) is a lethal cancer with limited therapeutic options. Patients with MPM have a poor prognosis, with estimated median survival 1 year and cure is rare. BRCA associated protein 1 (BAP1) has the highest prevalence of protein-altering mutations identified in MPM.

Aim of the study:

Assessment of the frequency and pattern of BAP1 gene mutations in Egyptian patients with Advanced Sporadic MPM in relation to response to treatment, disease progression and survival rates in order to identify a novel therapeutic target for MPM.

Methods:

A prospective, cohort study included 122 patients who were diagnosed and treated as advanced MPM at National cancer Institute. BAP1 gene mutations were assessed from circulating tumor cells (CTCs) and tissue blocks by Polymerase Chain Reaction (PCR) and Sequencing. BAP1 immunohistochemistry was performed using the Dako Envision visualization system. The relationship between BAP1 gene mutations, Progression Free Survival (PFS) and Overall Survival (OS) rates was assessed using the Log rank test. The relationship between BAP1 gene mutations, clinical response and patient's clinicopathological characteristics was assessed using Chi-Square test.

Results:

Forty seven (38.5%) MPM cases showed one or more mutations in BAP1 gene. The presence of BAP1 mutations associated significantly with BAP1 protein expression (p < 0.001), the incidence of organ metastasis (p = 0.04), PFS after second line treatment (p = 0.04) and clinical response after second line treatment (p = 0.01). There was no significant association between BAP1 mutation, PFS after first line treatment (p = 0.3), clinical response after first line treatment (p = 0.3), OS (p = 0.6) and other clinicopathological features of the patient including age, gender, asbestos exposure, smoking and histology.

Abstract

Conclusion:

BAP1 gene mutations are relatively common in Egyptian patients with Advanced Sporadic MPM. BAP1 mutations are associated with disease progression especially after second line therapy and the incidence of organ metastasis.

Key words:

Malignant Pleural Mesothelioma, BAP1 mutations, Circulating Tumor Cells, Immunohistochemistry, Overall Survival, Progression Free Survival, Overall Clinical Benefit.

Malignant Pleural Mesothelioma

Definition

Malignant Pleural Mesothelioma (MPM) is an insidious tumor arising from the mesothelial surfaces of the pleura. About 80% of Malignant Mesothelioma (MM) cases are pleural in origin (**NCCN guidelines, 2017**).

Epidemiology

Malignant Pleural Mesothelioma (MPM) affects approximately 2,500 persons in the United States every year. It was peaked around the year 2000 and is now declining, due to control the asbestos exposure (**Price et al., 2005**).

The incidence of MPM is increasing in many other places of the world, especially in Great Britain and Australia. The rate of MPM peaked around 2015 in England, but it declined gradually thereafter. These changes in the rate of MPM are associated with the understanding of the relationship between mesothelioma and asbestos exposure. In contrast, MPM incidence are predicted to increase dramatically in resource-limited countries due to poor regulation of asbestos mining, the utilization of industrial and household asbestos (**Park et al., 2011**).

MPM cases are also increasing in other countries such as Russia, Western Europe, China, and India (Nishikawa et al., 2008).

In Egypt it was estimated that there will be an increase in the incidence of MPM from 161 cases in 2013, to 456 cases in 2050 (**Ibrahim et al., 2014**).

MPM occurs mainly in elder men (median age of 72 years) who have been exposed to asbestos where it occurs 20–40 years later after asbestos exposure (**Taioli et al., 2015**).

In 2011 a high incidence of mesothelioma was reported in Egypt especially in women (39.2%) and young adults \leq 40 years (19.1%) (**Awad et al., 2011**).

The reported median age of MPM patients was 53 years. Residential exposure to asbestos was reported in 64.7% of cases from Shoubra El Kheima, 35.6% from El Maasara, 23.6% from El Zeytoon whereas 25% of

cases came from other Cairo areas and only 9.8% came from other governorates. A registry data from National cancer Institute (NCI) showed an increase in the relative frequency of MPM from 0.47% in the year 20 02 to 1.3% in the year 2003 (**Awad et al., 2011**).

The mortality rates from MPM are increasing with estimated median survival times ranging from 4 to 12 months. It reached to high levels in the United Kingdom, Netherlands, Australia, Japan, Argentina and Brazil (Nishikawa et al., 2008).

According to **Ibrahim et al., 2014** the Overall Survival (OS) of MPM patients in Egypt ranges from 1 to 70 months, and the median survival duration was 8±2.211months.

Risk and Prognostic factors

The risk of developing Malignant Pleural Mesothelioma (MPM) is age dependent where it is ten times higher in persons > 60 years than in persons < 40 years (Neumann et al., 2013).

Smoking isn't considered a risk factor for MPM; however smoking together with asbestos exposure is increased the risk for lung cancer development (NCCN guidelines, 2017).

Patients with MPM have a poor prognosis, with estimated median survival 1 year. The main prognostic factors in MPM are the age, sex, tumor subtype, and disease stage. Patients with Epithelioid tumors have a relatively favorable prognosis, as do women and patients who are less than 75 years (Neumann et al., 2013).

The World Health Organization (WHO) Classification of Tumors of the Pleura 2015 showed that the Pleomorphic and Sarcomatoid subtypes are usually associated with a poor prognosis (Galateau-salle et al., 2015).

Malignant Pleural Mesothelioma (MPM) is an aggressive cancer that occurs more frequently in men, and is associated with longer survival in women (**De Rienzo et al., 2016**).

Within chemotherapy trials, two Prognostic scoring systems have been identified by the statistical analysis of large series of patients, The European Organization for Research and Treatment of Cancer (EORTC) as well as the Cancer and Leukaemia Group B (CALGB) which have been validated by Leicester series.

The EORTC series identified two risk groups, the high risk group were characterized with Eastern Cooperative Oncology Group (ECOG) Performance Status (PS) more than one, high WBC count, low hemoglobin level, probable/possible histologic diagnosis of mesothelioma, and having sarcomatous tissue as the histologic subtype. Age, Gender, Modified Butchart staging didn't affect survival significantly (Curran et al., 1998).

The regression tree of CALGB series characterized six prognostic groups of similar survival characteristics. Patients with pleural disease, LDH more than 500 lU/L, poor PS, platelet count >400,000/ fLL, nonepithelial histology, and increasing age more than 75 years showed poor survival (Herndon et al., 1998 and Edwards et al., 2000).

For Leicester series median survival rates were comparable to the EORTC and CALGB series. A history of asbestos exposure was also reported in 81% of cases but wasn't considered as significant poor prognostic factor (**Fennell et al., 2005**).

In a revision of the seventh edition of TNM staging of MPM, The eighth edition has identified any metastasis as stage IV for MPM. The median survival with stage IV was 9.7 months compared to the median survival for stage III B which was 13.4 months (**Rusch et al., 2016**).

In addition, infection with Simian Vacuolating Virus 40 (SV40) together with asbestos exposure could contribute to poor Overall Survival (OS) in MPM patients (Zekri et al., 2007).

Some investigators showed that the Neutrophil /Lymphocyte (N/L) ratio represents another prognostic marker in advanced cases of MPM treated with second line chemotherapy as it is associated with lowering the 6 months Progression Free Survival (PFS) (El Bastawisy et al., 2014).