

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Electrical Communication Engineering

Massive MIMO Systems for 5G Wireless Networks

A Thesis submitted in partial fulfillment of the requirements of Master of Science degree in Electrical Engineering Electronics and Electrical Communication Engineering

by

Abanoub Mamdouh Girgis

Bachelor of Science in Electrical Engineering (Electronics and Electrical Communication Engineering) Thebes Higher Institute of Engineering , 2013

Supervised By

Prof. Dr. Salwa Hussein El-Ramly
Dr. Bassant Abdelhamid Mohamed Ahmed

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Electrical Communication Engineering

Massive MIMO Systems for 5G Wireless Networks

by

Abanoub Mamdouh Girgis

Bachelor of Science in Electrical Engineering (Electronics and Electrical Communication Engineering) Thebes Higher Institute of Engineering, 2013

Examiners' Committee

Name and affiliation	Signature
Prof. Dr. Said El-Sayed Ismail El-Khamy	
Electronics and Electrical Communication Engineering.	
Faculty of Engineering, Alexandria University.	
Prof. Dr. Abdelhalim Abdelnaby Zekry	
Electronics and Electrical Communication Engineering.	
Faculty of Engineering, Ain Shams University.	
Prof. Dr. Salwa Hussein El-Ramly	
Electronics and Electrical Communication Engineering.	
Faculty of Engineering, Ain Shams University.	

Date: 23 / 10 / 2018

Statement

This thesis is submitted as a partial fulfillment of Master of Science degree in

Electrical Engineering, Electronics and Electrical Communication Department,

Faculty of Engineering, Ain shams University, Cairo, Egypt.

The author carried out the work included in this thesis, and no part of it has been

submitted for a degree or a qualification at any other scientific entity.

Abanoub Mamdouh Girgis

Signature

Date: 23 / 10 / 2018

Researcher Data

Name: Abanoub Mamdouh Girgis.

Date of Birth: 12/1/1991.

Place of Birth: Egypt.

Last academic degree: Bachelor of Science in Electrical Engineering.

Field of specialization: Electronics and Electrical Communication Engineering.

University issued the degree: Thebes Higher Institute of Engineering.

Date of issued degree: May, 2013.

Current job: Teaching Assistant.

Thesis Summary

This thesis proposes two novel pilot allocation schemes in order to mitigate the pilot contamination effect and to enhance the system performance with low complexity techniques of pilot allocation. The thesis is divided into seven chapters as listed below:

Chapter 1 provides our motivations towards the fifth generation (5G) wireless networks along with Massive Multiple-Input Multiple-Output (MIMO) technique in order to keep up with the dramatic exponential growth of data traffic. Additionally, a brief introduction exhibits a point-to-point MIMO system, multi-user MIMO system, and massive MIMO system. At the end of the chapter, we provide our contributions in this thesis.

<u>Chapter 2</u> presents an overview of massive MIMO systems; We move from point-to-point MIMO systems to massive MIMO systems passing through multi-user MIMO systems in more details. In addition, the main operations required to work on massive MIMO systems are discussed. Furthermore, we describe the main advantages of massive MIMO systems and their challenges needed to be tackled to make massive MIMO systems a reality such as the pilot contamination effect.

<u>Chapter 3</u> explains one of the main challenges for the massive MIMO systems which is the pilot contamination effect that limits the performance of massive MIMO systems. This effect appears in the channel estimation phase when all users in a specific cell transmit orthogonal pilot sequences to its BS, but due to the limitation of channel coherence interval these pilot sequences are reused in the adjacent cells. Hence, the estimated channel state information at the BS in this cell is contaminated by users that use the same pilot sequences in other cells that cause the pilot contamination effect. The techniques used in literature in the last few years to mitigate the pilot contamination effect can be divided into two categories according to the pilot allocation. The first category assigns the pilot sequences to the users randomly, while the other category optimizes the pilot allocation based on a per-user basis.

<u>Chapter 4</u> describes the system model of the massive MIMO network and the assumptions we use throughout this thesis including cellular network description, channel estimation, and data transmission.

Chapter 5 provides the two proposed-novel pilot allocation schemes to mitigate the pilot contamination effect discussed in Chapter 3 and to enhance the system performance using low complexity techniques. We illustrate how our proposed schemes outperform some of the conventional scheme mentioned in Chapter 3, and how these novel schemes overcome the resource limitations problems. In addition, we analyze the performance of the proposed massive MIMO schemes with non-cooperative base stations. First, the achievable spectral efficiency adopting both the maximum-ratio combining (MRC) and zero-forcing (ZF) schemes are obtained. Then, the obtained spectral efficiency of these proposed schemes is formulated as an optimization problem to maximize the overall spectral efficiency over the ratio of center zone radius to the cell radius and the number of scheduled users per cell. After that, this optimization problem is mathematically solved in order to find the optimal solutions. In addition, the upper bound for ergodic capacity is analytically derived in order to illustrate that the proposed schemes are more close to the upper bound than the conventional schemes in the literature.

Chapter 6 investigates the performance of the proposed schemes to mitigate the pilot contamination effect in massive MIMO systems against the conventional schemes. Firstly, the optimization problem is solved using the exhaustive search and the simulation results of the optimized spectral efficiency for the proposed schemes are compared against the conventional schemes. It turns out that the spectral efficiency of the proposed schemes always outweigh the spectral efficiency of the conventional schemes along the number of BS antennas. This is a consequence of wisely allocating the pilot sequences among the users due to dividing the cell coverage into center and edge zones and sectorizing the edge zone.

<u>Chapter 7</u> provides overall conclusions for our work. This chapter also provides the possible future research directions.

Abstract

The wireless data traffic has grown exponentially due to the dramatic increase of connected devices and the proliferation of new applications requiring high data rate. According to Martin Cooper law, the demand for wireless data traffic will be doubled every eighteen months. Hence, fifth generation (5G) wireless communication networks are required along with new technologies in which many users can be simultaneously served with very high throughput.

One of the promising technologies that can allow 5G cellular networks to meet these demands is the massive Multi-Input Multi-Output (MIMO) technique, where each base station (BS) is equipped with a large number of antennas to serve a multiple number of single-antenna user equipments (UEs), simultaneously in the same time and frequency resource. Massive MIMO systems can substantially enhance the spectral efficiency in order of magnitude compared to the conventional MIMO systems.

Within the cell, the BS is only required to know the channel state information (CSI) in order to do multi-user precoding in the downlink and data detection in the uplink. The uplink CSI is estimated at the BS based on the uplink orthogonal pilot sequences. Because the number of pilot sequences is limited by the channel coherence interval, the pilot sequences are mutually orthogonal in the same cell but necessarily reused in some adjacent cells. Therefore, the estimated CSI at the BS in a given cell is contaminated by the users that use the same pilot sequences in other cells. This effect is called pilot contamination that limits the performance of massive MIMO systems.

In this thesis, we propose two novel pilot allocation schemes in order to mitigate the pilot contamination effect and to enhance the performance of massive MIMO systems with low complexity of pilot allocation. In these proposed schemes, the cell coverage is partitioned into center and edge zones. Furthermore, the edge zone is sectorized into a number of uniform sectors by the smart antenna technique. The achievable spectral efficiency adopting both the maximum-ratio combining (MRC) and zero-forcing (ZF) schemes are obtained. Then, the obtained spectral efficiency of these proposed schemes are formulated as an optimization problem with an objective of maximizing the overall spectral efficiency over the ratio of center zone radius to the cell radius and the number of scheduled users per cell. After that, this optimization problem is mathematically solved in order to find the optimal solutions. In addition, the upper bound for ergodic capacity is analytically derived in order to illustrate that the proposed schemes are more close to the upper bound than the conventional schemes in the literature.

Finally, the performance of these proposed schemes is investigated through simulations results in which the optimization problem is also solved using the exhaustive search in order to find the optimized spectral efficiency for the proposed schemes. Moreover, the obtained results are compared against the conventional schemes, and the upper bound on the ergodic capacity. It turns out that the spectral efficiency of the proposed schemes always outweigh the spectral efficiency of the conventional schemes along the number of BS antennas and also the performance gap between the upper bound on ergodic capacity and the proposed schemes is less than the performance gap between the upper bound on ergodic capacity and the conventional schemes. This is a consequence of wisely allocating the pilot sequences among the users due to dividing the cell coverage into center and edge zones and sectorizing the edge zone.

Acknowledgment

I am grateful to take the opportunity to acknowledge the direct and indirect help of many people during my M.Sc degree.

I would like to extend my sincere gratitude and thanks to my supervisors, Prof. Dr. Salwa Elramly and Dr. Bassant Abdelhamid, for their guidance and support throughout the thesis. They spent an incredible amount of time and effort to discuss, suggest, and review the development of work at each stage. I thank them for making even advanced technical concepts seem understandable with their vast knowledge and encouragement. They worked hard with me to impress the right approach and skills for research.

I was lucky to meet experts in my field. I am thankful to Dr. Emil Björnson at Linköping university, Sweden., for his great cooperation. He gave me valuable help whenever I asked for assistance. I am also thankful to my brother, Eng. Antonious M.Girgis at Nile university, Egypt, for his support, and encouragement.

I would like to thank my parents for their constant love, encouragement, and limitless support throughout my life. Furthermore, I would like to thank my brother and my little sister.

I extend my gratitude to the editors and reviewers of 2016 IEEE Global Conference on Signal and Information Processing and IEEE Wireless Communication and Networking Conference for their insightful commentaries which have helped me to improve my research.

It is always impossible to personally thank everyone who has facilitated successful completion of this thesis. To those of you who I didn't specifically name, I also give my thanks for moving me towards my goal.

Table of Contents

Li	st of	Symbols xii	ì
Li	st of	Abbreviations	K
Li	st of	Figures xx	i
Li	st of	Tables xxii	i
1	Intr	roduction	1
	1.1	Motivation	1
	1.2	Background	2
	1.3	Thesis contributions	6
	1.4	Thesis organization	7
2	Ove	erview of Massive MIMO)
	2.1	The Road to MIMO Communication	Э
		2.1.1 Point-to-point MIMO communication	1
		2.1.1.1 Advantages of point-to-point MIMO 12	2
		2.1.1.2 Challenges of point-to-point MIMO	2
		2.1.2 Multi-User MIMO Communication	3
	2.2	Massive MIMO	5
	2.3	Massive MIMO Operation	õ
		2.3.1 Channel Estimation	5
		2.3.1.1 Channel estimation in TDD systems 10	S
		2.3.1.2 Channel estimation in FDD systems 10	S
		2.3.2 Uplink Data Transmission	3
		2.3.3 Downlink Data Transmission	J
	2.4	Advantages of Massive MIMO	1
	2.5	Massive MIMO Challenges	4
	2.6	Summary	ō
3	Lite	erature Review 2	7
	3.1	Pilot contamination	7
	3.2	Pilot contamination Mitigation Techniques	1
		3.2.1 Random pilot allocation category	1
		3.2.1.1 Less Aggressive Pilot Reuse Scheme	1
		3.2.1.2 Fractional Pilot Reuse Scheme	4

Table of Contents xii

		3.2.1.3 Cell Sectorization-based Pilot Assignment Scheme	37
		3.2.2 Smart Pilot Allocation Category	
		3.2.2.1 Smart Pilot Assignment Scheme	
	3.3	Summary	41
4	Sys	tem Model	44
	4.1	System Description	44
	4.2	Uplink Channel Estimation	48
		4.2.1 MMSE Estimation	49
	4.3	Uplink Data Transmission	54
	4.4	Linear Detection Schemes	
		4.4.1 Maximum-Ratio Combining Scheme	56
		4.4.2 Zero-Forcing Combining Scheme	57
	4.5	Summary	58
5	Pro	posed Pilot Allocation Schemes	60
	5.1	Proposed pilot allocation schemes	61
	5.2	Gains of Our Proposed Schemes	67
	5.3	Achievable Spectral Efficiency	
		5.3.1 Achievable Center Zone Spectral Efficiency	73
		5.3.2 Achievable Edge Zone Spectral Efficiency	74
	5.4	Problem Formulation	75
	5.5	Mathematical Solution of Optimization Problem	77
	5.6	Illustrative Example for the Proposed Schemes	92
	5.7	Upper Bound on Ergodic Capacity	
	5.8	Summary	98
6	Sim	nulation Results	100
	6.1	Simulation setup	101
	6.2	Results and Discussion	104
	6.3	Impact of system parameters	109
	6.4	Summary	117
7	Cor	nclusions and Future Work	119
	7.1	Conclusions	119
	7.2	Future Work	120
A	Bay	vesian Minimum Mean Squared Error Estimator	122
Bi	blios	graphy	128

List of Symbols

\mathbf{a}_{fu}	information vector transmitted by the u -th user in the f -th cell
$a_{fu}(t)$	symbol transmitted by the u -th user in the f -th cell in a time slot (t)
B	number of orthogonal pilot sequences
b_j	location of the BS in the j -th cell
$eta_j(\mathbf{z}_{fu})$	variance of channel attenuation from the j -th BS and the position of u -th user in the f -th cell
C_{j}	set of center zone user in the j -th cell
σ^2	noise power at the receiver
σ_P^2	noise power at the j -th BS during the channel estimation phase
d_2	distance between the u -th user in the f -th cell and the BS in j -th cell
\mathbf{e}_{jfu}	estimation error of the u -th user in the f -th cell
\mathcal{F}_q	permutation of U users satisfy that the channel quality of each user is sorted in descending order
\mathcal{F}_p	permutation of U pilot sequences satisfy that the inter-cell interference of each pilot sequence is sorted in descending order
F	number of non-cooperative cells in massive MIMO system
\mathcal{F}	set of cells in massive MIMO system

List of Symbols xiv

f	one of the cell in the network
Н	channel matrix between the user and the BS in P2P MIMO system
\mathbf{h}_u	uplink channel vector of the u -th user
\mathbf{h}_u^T	downlink channel vector of the u -th user
\mathbf{h}_{jfu}	channel response between the j -th BS and the u -th user in f -th cell
$ar{ar{\mathbf{h}}}_{jfu}$	effective power-controlled uplink channel of the u -th user in f -th cell
$\hat{ar{f h}}_{jfu}$	estimated effective power-controlled uplink channel of the u -th user in the f -th cell
G	linear detection matrix
\mathbf{g}_u	the u -th column of the linear detection matrix
ξ_{jlu}	variance of the estimated effective power-controlled channel between an arbitrary user u in cell f and BS j
Γ_C	ratio of center zone radius to the cell radius
G_f	set of users in the f -th cell that use the same pilot sequences of the u -th user in the j -th cell
I_{C_j}	interference term for the center zone users in the j -th cell
I_{E_j}	interference term for the edge zone users in a single sector in the j -th cell
j	cell of interest
$\chi_{j,G_f}^{(\gamma)}$	propagation parameter between the BS in the j -th cell and an arbitrary user in the set G_f in the f -th cell
κ	pathloss exponent
\mathcal{L}_f	set of cells indices that use the same pilot sequences as cell f
λ	wavelength

List of Symbols xv

M	number of antennas at the BS
\mathcal{M}	set of cells that cover the sectors allocated with the same pilot sequence in a specified area
$\mu_{ar{ extbf{h}}}$	mean of effective power-controlled channel of the u -th user in the f -th cell
$\mu_{\mathbf{y}}$	mean of the received signal at the j -th BS from the u -th user in the f -th cell
μ_r	mathematical expectation of the random variable r
$\mu_{ heta}$	mathematical expectation of the random variable θ
n	noise vector at the receiver in P2P MIMO system
ñ	noise vector at the BS during uplink data transmission
$reve{n}_u$	additive noise at the u -th user
\mathbf{N}_j	noise matrix at the j -th BS
\mathbf{N}_{j}^{P}	noise matrix at the j -th BS during the channel estimation phase
\mathbf{N}_{j}^{D}	noise matrix at the j -th BS during the data transmission phase
$\mathbf{n}_{j}^{D}(t)$	additive noise in a time slot (t)
N	number of sectors in the edge zone
$\ddot{\mathcal{P}}$	power of the uplink transmitted signal
$reve{\mathcal{P}}$	downlink transmit power at the u -th user
\mathcal{P}_{fu}	transmit power of the u -th user in the f -th cell
Ψ	estimation error covarinace matrix
q	precoded signal vector intended to the users
R_{xx}	covariance matrix of the transmitted signal vector (\mathbf{x})