PREDICTING GROUNDWATER QUALITY AT WADI EL-NATRUN AREA EGYPT BY USING SATELLITE DATA AND GIS

Submitted By Mohamed Gabriel Aly Abd El-Kreem

B.Sc. of Science (chemistry), Faculty of Science, Al-Azhar University, 2008

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Science Institute of Environmental Studies and Research Ain Shams University

2018

APPROVAL SHEET

PREDICTING GROUNDWATER QUALITY AT WADI EL-NATRUN AREA EGYPT BY USING SATELLITE DATA AND GIS

Submitted By

Mohamed Gabriel Aly Abd El-Kreem

B.Sc. of Science (chemistry), Faculty of Science, Al-Azhar University, 2008

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Basic Sciences
This thesis Towards a Master Degree in Environmental Science
Has been Approved by:

Name Signature

1- Prof. Dr. Mohamed Adel Yehia

Prof. of Geology and Remote Sensing Faculty of Science Ain Shams University

2- Prof. Dr. Mohamed Gharib El-Malky

Prof. of Environmental Geophysics, Department of Environmental Basic Sciences- Institute of Environmental Studies & Research Ain Shams University

3- Dr. Hassan Kamel Fathy Garamon

Associate Prof. Department of Geology Faculty of Science Ain Shams University

4- Dr. Adel Abd El Hamid Salem Shalaby

Associate Prof. Researcher- Chairman of land use department At National Authority for Remote Sensing & Space Science

PREDICTING GROUNDWATER QUALITY AT WADI EL-NATRUN AREA EGYPT BY USING SATELLITE DATA AND GIS

Submitted By Mohamed Gabriel Aly Abd El-Kreem

B.Sc. of Science (chemistry), Faculty of Science, Al-Azhar University, 2008

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1- Prof. Dr. Mohamed Gharib El-Malky

Prof. of Environmental Geophysics Institute of Environmental Studies & Research Ain Shams University

2- Dr. Adel Abd El Hamid Salem Shalaby

Associate Prof. Researcher- Chairman of land use department National Authority for Remote Sensing & Space Science

2018

ACKNOWLEDGMENT

First of all, I thank *Allah* for giving me the ability to prepare this work.

My sincere and deep gratitude to *Prof. Dr. Mohamed Gharib El-Malky*, as my professor, Professor of Geophysics-Department of Environmental Basic Science-Institute of Environmental Studies and Research- Ain Shams University hanks also to him for guiding me during the fieldwork studies, reading and finally revising all the manuscript. I am indebted to him more than he knows and always was available when I needed his advice. Thank you.

All thanks to *Dr. Adel Abd El Hamid Salem Shalaby* Associate Professor Researcher – Chairman of land use department at National Authority for Remote Sensing & Space Science for supervision, encouragement, continues guidance and advice during performing this work.

I would like to express my deepest gratitude and appreciation to my Father *Dr. Gabreel Ali Abd El-kreem* Egyptian Mineral Resources Authority-petroleum ministry for his help and continuous encouragement during the preparation of this work.

Also, I wish to express my sincere gratitude to my best friend *Abdelmegeed Fathy Abdelmegeed*, assistant Instructor of Applied Chemistry, chemistry department, faculty of science, Al-Azhar University and *Ahmed Mahmud Khalifa*, GIS& RS Specialist, Department of Marine Sciences, National Authority for Remote

Acknowledgement

Sensing and Space Science (NARSS) for all their help, valuable discussions.

Also, I cannot forget to express my deepest gratitude to my beloved mother, Brother, sisters for their encouragement and fruitful advices and also for their praying continually for me.

I also express my thankfulness to all the staff members in the central laboratory of the Egyptian Mineral Resources Authority and Mining Projects (*EMRA*).

I wish to express my sincere gratitude to my wife, microbiologist *Swsan Essam*, for supporting and allowing me to leave her at home during of this study.

Mohamed Gabreel Ali Abd El-kreem

ABSTRACT

Wadi El-Natrun area lies in the northeastern region of the Western Desert to the west of the Nile Delta. Wadi El-Natrun is a narrow depression 23 m below sea level, Wadi El-Natrun area is regarded as an extremely arid region of Egypt, long dry summer and a cold winter with little rain and daily evaporation rate are high.

The main aims of the present study are assessing of the quality of groundwater aquifer at Wadi El-Natrun area integrating remote sensing (RS) technology and geographical information systems (GIS) as effective tools for monitoring environmental change and the impacts of this change on the quality of groundwater and water resources.

The topographical characteristics of the Wadi El-Natrun area were determined by the use of the SRTM DEM with an accuracy of approximately 90 m as a GIS tool, morphometric parameters (linear aspect (La) the Areal aspects (Aa) and Relief Aspects (Ra)) of main basins at Wadi El-Natrun were detected, geological and morphological maps of Wadi El-Natrun were updated.

Integrate between (RS) and (GIS) was used to detect the reclamation processes occurred during the pried 1984, 2003 and 2016. The remote sensing images of Landsat Thematic Mapper (TM) of 1984, 2003 and Centennial two of 2016 have been used. Land cover/land use and change detection maps were prepared, which indicate the rapid change in

the Wadi El-Natrun area and the heavy increase of the agricultural patch and urban expansion in Wadi El-Natrun area.

Water samples were collected from 60 wells from Wadi El-Natrun area and subject to different analysis to detect physical and chemical parameters, physical parameters including temperature, total dissolved solids, pH and electrical conductivity, chemical parameters including, major cations Calcium (Ca²⁺), Magnesium (Mg²⁺), Sodium (Na⁺), Potassium (K⁺), major anions Bicarbonate (HCO₃⁻), Carbonate (CO₃²⁻), Chloride (Cl⁻) and Sulfate (SO₄²⁻), Nutrients (NH₄⁺, NO₃⁻,PO₄³⁻) and some trace elements (Fe , Mn, Cu, Co, Ni ,Cr ,Cd ,Pb, As). These results were subjected to statistical reviews to make sure the measurement is accurate. These parameters are correlated with the groundwater situation and character in each part of the studied area by Extraction of distribution maps of groundwater quality.

(Gibbs1970) Diagram was used to determine the mechanism of adding positive and negative ions to groundwater. It was found to be mixed controlling mechanism rock-water interaction and evaporation.

(Piper1944) and (Chadha's 1999) diagrams were used to detect groundwater type at Wadi El-Natrun, in addition, classification by Hierarchical cluster analysis method Ward (1963) although used, it was found that water in Wadi El-Natrun area (sodium-chloride) and type (sodium-sulfate).

Abstract

Assess the groundwater of Wadi El-Natrun for different uses such as drinking, domestic and irrigation purposes and livestock & poultry drinking.

For drinking water compared the result of water analysis to (WHO, Nitrate pollution index (NPI), Toxic Metal, Water Quality Index (WQI)) which classified as %30good and 70% from poor to very poor and unsuitable.

For drinking irrigation compared the result of water analysis to Water salinity and alkalinity, Sodium percentage (Na %), Sodium adsorption ratio (SAR) SAR can be classified used Wilcox diagram, Residual sodium carbonate (RSC), Percent magnesium (%Mg), Permeability Index (PI), Kelly index (KI). Chloride content (Cl⁻), which indicate water unsuitable for irrigation and can be used for irrigating specific crops resist the saline water with high permeable soil.

For domestic purpose compared the result of water analysis to (total dissolved solids (TDS), total hardness (TH) and corrosively ratio (CR) which indicate this groundwater can't be used for domestic purpose.

For livestock and poultry drinking, indicate a lot of wells not suitable for poultry and fit for livestock, taking into account the special conditions such as what the kind of livestock, age, sex, pregnancy, the intensity of work performed by animals.

LIST OF CONTENTS

TITLE	Page No.
ACKNOWLEDGMENTS	i
ABSTRACTS	iii
TABLE OF CONTENT	vi
LIST OF TABLES	xvi
LIST OF FIGURES	XX
APPREVIATIONS LIST	xxxiv
CHAPTER 1: INTRODUCTION	
1.1 GENERAL	1
1.2 NEED FOR STUDY	2
1.3 AIM AND OBJECTIVES OF THE PRESENT STUDY	5
1.4 STRUCTURE OF THE THESIS	7
1.5 LOCATION OF STUDY AREA	9
1.6 CLIMATE	11
CHAPTER 2: LITERATURE REVIEW AND PREVIOUS WORK	
2.1 REMOTE SENSING	18
2.1.1 HISTORY OF REMOTE SENSING	18
2.1.2 REMOTE SENSING DATA	20
2.1.2.1 ACTIVE REMOTE SENSING	20
2.1.2.2 PASSIVE REMOTE SENSING	20
2.1.3 ADVANTAGE OF REMOTE SENSING	21
2.1.4 LIMITATION DURING APPLICATION OF REMOTE SENSING TOOL	21
2.2 GEOGRAPHIC INFORMATION SYSTEM (GIS)	22

TITLE	Page No.
2.2.1 HISTORY OF GIS	24
2.2.2 ELEMENT OF GIS	25
2.2.3 DATA MODELS	27
2.3 GEOMORPHOLOGICAL FEATURES	29
2.3.1 Alluvial plains	30
2.3.2 Structural plains	31
2.3.3 The shifting sand drifts	32
2.4 GEOLOGICAL SETTING OF WADI EL-NATRUN	32
2.4.1 JURASSIC.	33
2.4.1.1 Wadi EL-Natrun Formation.	33
2.4.1.2 Khatatba Formation.	34
2.4.1.3 Masajid Formation.	34
2.4.2 CRETACEOUS.	34
2.4.2.1. Betty Formation	35
2.4.2.2 Alam EI-Bueib Formation	35
2.4.2.3 Alamein Dolomite Formation	35
2.4.2.4 Kharita Formation	36
2.4.2.5 Bahariya Formation	36
2.4.2.6 Abu Roash Formation	36
2.4.2.7 Khoman Formation	37

TITLE	Page
	No.
2.4.3. Eocene	40
2.4.4. Oligocene	40
2.4.5 Miocene	40
2.4.5.1 Gabal Khashab Formation	41
2.4.5.2 Mikheimin Formation	41
2.4.6 Pliocene	41
2.4.6.1 Gar El-Meluk Formation	42
2.4.6.2 Hagif Formation	42
2.5 HYDROLOGY AND HYDROGEOLOGY OF STUDY	45
AREA	
2.5.1 Delta aquifer (Quaternary)	46
2.5.1. 1. The depth of water	46
2.5.1.2 Recharge	46
2.5.1. 3. Discharge	47
2.5.1.4 Hydraulic parameters	47
2.5.2 El Moghra aquifer (Miocene)	48
2.5.2. 1 The depth of water	49
2.5.2.2 Recharge	49
2.5.2.3 Discharge	50
2.5.2.4 Hydraulic parameters	50

	Page
TITLE	No.
2.5.3 Wadi El Natrun Aquifer (Pliocene) .	50
2.5.3.1 The origin of the water	52
2.5.3.2 The depth of water	53
2.5.3.3 Discharge	54
2.5.3.4 Recharge	55
2.5.3.5 Hydraulic parameters	55
2.5.3.6 Overlap hydrological systems at the study area	56
2.6 PREVIOUS WORK OF STUDY AREA	59
CHAPTER (3) MATERIALS AND METHODS	
3.1 FIELD TRIPS	67
3.2 WATER SAMPLING	68
3.2.1 Sample Identification	68
3.2.2 Preservation techniques for water samples	68
3.3 LABORATORY ANALYSIS	73
3.3.1 PHYSICAL PARAMETERS	73
3.3.1.1 Temperature (T °C)	74
3.3.1.2 Electrical Conductivity (EC)	74
3.3.2 CHEMICAL PARAMETERS	74
3.3.2.1 Hydrogen ions concentration (pH)	74

TITLE	Page
	No.
3.3.2.2 Total dissolved solids (TDS)	75
3.3.2 MAJOR CATIONS	75
3.3.3 MAJOR ANIONS	77
3.3.4 DISTRIBUTION OF NUTRIENTS	79
3.3.5 TRACE ELEMENTS (HEAVY METALS)	79
3.4 HYDROCHEMICAL DATA RELIABILITY CHECK	80
3.5 HYDROGEOCHEMICAL STUDY	82
3.6 WATER QUALITY ASSESSMENT	83
3.7 REMOTE SENSING AND GIS STUDIES	84
3.7.1 TOPOGRAPHIC PARAMETERS	86
3.7.2 QUANTITATIVE MORPHOMETRIC ANALYSIS	90
3.7.3 LAND SURFACE TEMPERATURE (LST)	93
3.7.4 LAND COVER AND LAND USE	95
3.7.5 WATER QUALITY MAPS	98
CHAPTER 4: RESULTS& DISCUSSION REMOTE SENSI	NG &
GIS STUDIES	
4.1 HYDROLOGICAL MODELING	99
4.2 TOPOGRAPHIC PARAMETERS	100
4.1.1 CONTOUR MAP	101

TITLE	Page
TILE	No.
4.1.2 ELEVATION MAP	103
4.1.3 ASPECT MAP	103
4.1.4 SLOPE MAP	108
4.1.5 HILLSHADE MAP	108
4.3 QUANTITATIVE MORPHOMETRIC ANALYSIS	
(WATERSHED OF WADI EL-NATRUN)	111
4.3.1 DRAINAGE BASINS AT WADI EL-NATRUN	112
4.3.1.1 FLOW DIRECTION	113
3.3.1.2 FLOW ACCUMULATION	119
4.3.1.3 STREAM ORDERS	121
3.3.2 MORPHOMETRIC ANALYSIS OF BASINS BY	125
ARC MAP 10.1	
4.3.2.1 LINEAR ASPECTS	128
4.3.2.1.1 STREAM NUMBER (N) AND STREAM ORDERS	
(U) STREAM LENGTH	128
4.3.2.1.2 MEAN STREAM LENGTH (Lu)	129
4.3.2.1.3 STREAM LENGTH RATIO (RL)	132
4.3.2.1.4 BIFURCATION RATIO (Rb)	133
4.3.2.2 AERIAL ASPECT	134
4.3.2.2.1 FORM FACTOR (Ff)	134

	Page
TITLE	No.
4.3.2.2.2 CIRCULATION RATIO (Rc)	134
4.3.2.2.3 ELONGATION RATIO (Re)	135
4.3.2.2.4 DRAINAGE DENSITY	136
4.3.2.2.5 DRAINAGE TEXTURE (Rt)	137
4.3.2.2.6 LENGTH OF OVERLAND FLOW (Lg)	140
4.3.2.2.7 STREAM FREQUENCY (Fs)	140
4.3.2.2.8. CONSTANT CHANNEL MAINTENANCE(C)	141
4.3.2.2.9. DRAINAGE INTENSITY (Id)	144
4.3.2.3 RELIEF ASPECTS	145
4.3.2.3.1 BASIN RELIEF (H)	145
4.3.2.3.2 RELIEF RATIO (Rh)	145
4.3.2.3.3 RELATIVE RELIEF (Rhp)	146
4.3.2.3.4 RUGGEDNESS NUMBER (HD)	146
4.4 LAND COVER AND LAND USE	148
4.4.1 LAND COVER	148
4.4.2 LAND USE	151
4.4.2.1 UNSUPERVISED CLASSIFICATION	152