

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

GEOELECTRICAL STUDY TO DELINEATE THE EFFECT OF GROUNDWATER INCREMENT IN ABU-SIR ARCHAEOLOGICAL AREA, GIZA, EGYPT.

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUREMENTS FOR THE MASTER DEGREE OF SCIENCE (GEOPHYSICS)

MAMDOUH MOHAMED MOHAMED SOLIMA

B.Sc., 1988 in Geophysics

TO

GEOPHYSICS DEPARTMENT, FACULTY OF SCIENCE, AIN SHAMS UNIVERSITY.

Supervisors

Prof. Dr. Abdel-Rady Ghareeb Hassaneen Head of Geomagnetic and Geoelectric Dept.

National Research Institute of Astronomy and Geophysics

ass owner

Dr. Salah El Deen A. Mousa

Assistant Prof. of Geophysics. Faculty of Science, Ain Shams University

678a9

Dr. Salah Shrief Osman

Assistant Prof. of Geophysics National Research Institute of Astronomy and Geophysics

2000

NOTE

Beside the research work presented in this thesis, the candidate attended 10 courses over one year period in the following topics.

- (1) Geophysical field measurements,
- (2) Numerical analysis and computer programming,
- (3) Potential theory,
- (4) Electric methods,
- (5) Magnetic method,
- (6) Gravity method,
- (7) Shape of the earth,
- (8) Plate tectonics,
- (9) Electromagnetic and telluric current method,
- (10) Radiometric method.

He successfully passed the final examination of these courses in 1997. In addition, the student has successfully passed the English language examination.

Approved

Prof. Nasser M. Hassan

Head of Geophysics Department

Faculty of Science, Ain Shams University.

. . } 7

ACKNOWLEDGMENTS

Praise to ALLAH, who aided and guided me to bring forth this thesis to light. He first must be acknowledged for helping me and my countless thanks will never be sufficient

Great appreciation and gratitude more than words can be said to Prof. **Dr. A., Gh., Hassaneen** Prof. of Geophysics and head of Geomagnetic and Geoelectric Department, National Research Institute of Astronomy and Geophysics (NRIAG), for his continuous encouragement, patience and guidance. I acknowledge him also for providing the kind official facilities.

I am profoundly grateful and indebted to Dr. Salah El Deen A. Mousa, Assistant Prof. of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, for his suggesting the research point, continuos help, supervising the work, guidance and continuos encouragement and reading the manuscript.

Very faithful thanks, deepest gratitude and appreciation are expressed to **Dr. S., Sh., Osman** (NRIAG), for his kind supervision, continuous encouragement and help.

The author sincerely thanks Dr. S. A. Ragab, Dr. M., A., Abd Al-aal, Dr. M., N., Soliman and Dr. Mgdy A. Atya (NRIAG) for their joint help, encouragement and their field work efforts.

Thanks are due to **Prof. Dr.Nasser M. Hassan**, head of Department of geophysics, Faculty of Science, Ain Shams University for kind official help and encouragement.

My deep thanks are extended also to the staff members of the Geoelectric and Geothermics Laboratory (NRIAG) for their valuable help during the field and laboratory work.

Finally, I would like to express my deepest gratitude and indebtedness to my family for their continuous moral support throughout my life.

.

ABSTRACT

Mamdouh, Mohamed Mohamed Soliman. Geoelectrical study to delineate the effect of groundwater increment in Abu-Sir archaeological area, Giza, Egypt. M. Sc. Degree, Ain Shams University, Faculty of Science, Geophysics Department, 2000.

Abu-Sir area lies between Latitudes 29°50° and 29°55° N and Longitudes 31° 10° and 31° 15° E. This area has a great archaeological importance whereas, it includes the Sun Temple, three famous archaeological pyramids, and many other tombs.

The present study is concerned with mapping the groundwater aquifers, delineating the litho-facies distribution and the structural controls, and for studying the characteristics of the groundwater in Abu-Sir archaeological area. Moreover, archaeological prospecting using the newly developed Resistance Scanning technique has been applied at three archaeological sites south Abu-Sir Pyramids to delineate any resistivity contrasts showing any hidden archaeological bodies.

In the geoelectric resistivity work, 45 VESes using schlumberger configuration were carried out. In a primary step to interpret the present data qualitatively, the apparent resistivity data are used to construct iso-apparent resistivity maps and sections. From the qualitative interpretation, it is concluded that, the resistivity values increase with increasing AB/2 reflecting the presence of two bearing water zones (shallow and deep aquifers). The thicknesses of these aquifers increase to the east of the area under investigation and decrease gradually to the west of the area.

The apparent resistivity data is processed and interpreted quantitatively using Zohdy (1989) and Resist (Velpen, 1988) programs. The interpreted resistivity data are used in constructing twelve geoelectrical cross-sections, two iso-pach maps for the two upper layers (zone A and B) and water level map for the deep aquifer surface (zone C). According to these cross-sections and maps, the area under investigation is divided into four geoelectrical zones. The upper zone has a thickness varying from 4 to 19m and consists mainly of sandy gravel, while the second zone varies in thickness from 15 to 40m and varies in lithology from clay to sandy clay, and is underlain by a sandy zone intercalated with clay lenses having a thickness of about 50m. The fourth zone is a very high resistive zone, which is referred to limestone and marly limestone equiclude.

It is also appeared from the groundwater map constructed based on the resistivity data and in the light of the previous hydrographs for the groundwater wells in and near the area under study that, there is slightly decrease in the groundwater level after the construction of the High Dam.

In the resistance scanning work, three archaeological sites south Abu-Sir Pyramids in the studied area were surveyed using the Geoscan RM15 resistance meter applying the twin electrode configuration. Each site is divided into a certain number of grids, each grid is 20x20m. The obtained data from the three sites are processed and interpreted using geoplot program. The processed data are represented in the form of images and maps. The inspection of these maps shows circular high resistance anomalies, which likely seem to be mud brick tombs.

LIST OF CONTENTS

		page
	NOTE	
	AKNOWLEDGEMENTS	
	ABSTRACT	
	LIST OF CONTENTS	
	LIST OF FIGURES	
	LIST OF TABLES	
	CHAPTER 1: INTRODUCTION	1
1-1	GENERAL OUTLINES AND LOCATION OF THE AREA	1
1-2	TOPOGRAPHY	1
1-2-a	Abu-Sir Pyramids hills	1
1-2-b	The flood plains of the River Nile	5
1-3	AIM AND SCOPE OF THE STUDY	5
1-4	PREVIOUS WORKS,	6
1-4-a	Geological Works	6
1-4-b	Geophysical Works	6
1-5	QUATERNARY SEDIMENTS.	8
1-5-1	Holocene sediments	8
1-5-2	Plistocene sediments	8
1-6	TERTIARY SEDIMENTS:	8
1-6-1	Pliocene sediments	8
1-6-2	Miocene sediments	11
	CHAPTER 2: GEOMORPHOLOGICAL, GEOLOGICAL	
	SETTING AND HYDROGEOLOGICAL	
	CONSIDERATION AT ABU-SIR AREA	12
4.1	CENEDAL CEOLOCICAL CETTING.	10
2-1	GENERAL GEOLOGICAL SETTING:	12
2-2	GEOMORPHOLOGY:	12
2-2-1		14
2-2-2	The Structural Plain	14
2-2-3	The Pediment Plain	14
2-2-4	The Flood Plain	14
2-3	SURFACE GEOLOGY	14
2-4	LITHO-STRATIGRAPHY OF THE STUDIED AREA	16
2-4-1	Eocene	16
2-4-1-1	Upper Eocene rocks	19
2-4-1-1-a	Saqqara Member.	19
2-4-1-1-a-i	Bassal shale bed of Sqqara Member.	19
2-4-1-1-a-ii	Upper calcareous beds of Saqqara Member	19
2-4-1-1-b	Giran El- Ful Member.	19
2-4-2	Pliocene Rocks.	19

i

2-4-2-i	Early Pliocene marine sequence	20
2-4-2-ii	Late Pliocene fluviatile sequence.	20
2-4-3	Pleistocene Rocks.	20
2-4-4	Quaternary Sediments.	20
2-5	STRUCTURES:	21
2-5-a	The major fault in the studied area	23
2-5-b	Unconformities	23
2-6	HYDROGEOLOGY	25
2-7	DEFINATION OF AQUIFER FORMATION	26
	CHAPTER 3: PRINCIPLES OF ELECTRICAL	
	RESISTIVITY INVESTIGATION	20
		28
3-1	INTRODUCTION	28
3-2	ELECTRICAL RESISTIVITY METHOD	28
3-2-1	Basic Concepts	28
3-2-2	Theory of Electrical Resistivity	28
3-2-3	Resistivity Field Procedures	30
3-2-3-1	Vertical electrical sounding	31
3-2-3-2	Lateral profiling	31
3-2-4	Electrodes configurations	31
3-2-4-a	Wenner array	31
3-2-4-b	Schlumberger array	31
3-2-5	Applications of Resistivity Surveying	33
3-2-6	The GGA 31 D.C Earth's Resistivity Meter	33
3-3	RESISTIVITY SCANNING METHOD	34
3-3-1	Resistivity and Archaeology	34
3-3-2	Field Procedures	36
3-3-3	Twin Electrode Array	37
3-3-4	Planning a Survey	38
3-3-4-1	Area or line survey	39
3-3-4-2	Transverse pattern	39
3-3-4-3	Grid size.	39
3-3-4-4	Sample and transverse interval	40
3-3-4-5	Use of survey grid lines	41
	CHAPTER 4: DATA ACQUASITION AND	
	INTERPRETATION OF VERTICAL ELECTRICAL	
	SOUNDINGS	43
4-1	INTRODUCTION	43
4-2	GEOELECTRICAL RESISTIVITY MEASUREMENTS	44
4.2.1	Data Acquisition	44