

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural Engineering

BEHAVIOR OF TALL RC CHIMNEYS SUBJECTED TO SEISMIC AND WIND LOADS

A Thesis

Submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Civil Engineering
(Structural Engineering)

BY

Atef Mohamed Zinelabdin Mohamed Elsadat

Master of Science in Civil Engineering
(Structural Engineering)
Faculty of Engineering, Ain Shams University, 2006

SUPERVISED BY

Prof. Dr. Ayman Hussein Hosny

Professor of Concrete Structures, Structural Engineering Department, Ain Shams University

Dr. Mahmoud Mohamed El-Kateb

Assistant Professor, Structural Engineering Department, Ain Shams University

Cairo - (2018)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Structural

BEHAVIOR OF TALL RC CHIMNEYS SUBJECTED TO SEISMIC AND WIND LOADS

BY

Atef Mohamed Zinelabdin Mohamed Elsadat

Master of Science in Civil Engineering (Structural Engineering)
Faculty of Engineering, Ain Shams University, 2006

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Fouad Shenouda Fanous Professor Emeritus of Civil, Construction and Environmental Engineering, Former Structural Engineering Division and Assistant to the Civil Department Chair College of Engineering, Iowa State University, United States of America	
Prof. Dr. Mohamed Nour Eldine Saad Fayed Professor of Structural Engineering Structural Engineering Department Faculty of Engineering, Ain Shams University, Egypt	
Prof. Dr. Ayman Hussein Hosny khalil Professor of Concrete Structures Structural Engineering Department Faculty of Engineering, Ain Shams University, Egypt	

Date: 02/10/2018

STATEMENT

This thesis is submitted as a partial fulfillment of Doctor of Philosophy in

Civil Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has

been submitted for a degree or a qualification at any other scientific entity.

Name: Atef Mohamed Zinelabidin Mohamed Elsadat

Signature:

Date: 02/10/2018

II

Researcher Data

Name : Atef Mohamed Zinelabidin Mohamed

Elsadat

Date of birth : April 7, 1974

Place of birth : Zaytoun-Cairo-Egypt

Last academic degree : M.Sc. Degree in Structural Engineering

Field of specialization : Structural Engineering

University issued the degree: Ain Shams University

Date of issued degree: February, 2006

Current job : Senior Civil Specialist in PGESCo

AIN SHAMS UNIVERISTY FACULTY OF GINEERING

Structural Engineering Department

Abstract of the PhD Thesis Submitted by:

Eng. / Atef Mohamed Zinelabidin Mohamed Elsadat

Title of the Thesis:

Behavior of Tall RC Chimneys Subjected To Seismic and Wind Loads

Supervisors:

Prof. Dr. Ayman Hussein Hosny

Dr. Mahmoud Mohamed El-Kateb

ABSTRACT

A chimney is a structure that provides ventilation for hot flue gases or smoke from a boiler, stove, furnace or fireplace to the outside atmosphere. It safeguards people at or close to the plant from high concentrations of those pollutants by providing dilution of the pollutants in the atmosphere. The typical applications of chimneys in industrial projects are Power Plants, Cement Plants, Petro chemical Stacks, Refinery stacks, and Solar Chimneys.

In Egypt, and in the last few years, the government started the construction of a plenty of power plants, either fossil, solar or wind farms. The design of a tall chimney, being slender structure, is very sensitive to wind and seismic forces.

The scope of this research is to study the behavior of tall reinforced concrete chimneys subjected to seismic and wind loads and the main objectives are; (a) to investigate the effect of changing chimney height and diameter on the stability, static and dynamic properties of chimneys, (b) to determine the optimum height / diameter ratio as well as the optimum shell thickness and its corresponding reinforcement ratio for the investigated

IV

ranges and then widening it to the practical range of construction of R.C chimneys worldwide.

Three dimensional finite-element analysis software is used to investigate the static and dynamic behavior of frequently used chimneys in Egyptian power plants under seismic and wind loads. A comparison is made between the chimney section design strength using the simplified method suggested by the American concrete institute ACI 307-08 and the exact method by using interaction diagrams. Also, the chimney wind load is evaluated using the Egyptian Code for Calculation of Loads and Forces for Buildings ECP 201-2012 and the results are compared to ACI 307-08.

Three different chimney models are created for finite element analysis under seismic and wind loads. A beam model is denoted as simplified model and is mainly used for dynamic analysis, while the solid and shell models are denoted as detailed models and are used mainly for checking deflection and local stresses around openings. A comparison is made between the outputs of the three models.

An advanced Time History Analysis is introduced to simulate the variant dynamic component of the wind load at different chimney heights and the results are summarized and compared to the static analysis. A parametric study is conducted on El-SUEZ chimney Power Plant aiming at determining the optimum height/diameter ratio and the optimum shell thickness.

Keywords: Concrete chimney, Along-Wind, Across-Wind, Seismic, Slenderness ratio, Local Stresses.

ACKNOWLEDGEMENTS

All praise belongs to God, Most Gracious, and Most Merciful. Only through his grace and guidance, this work was completed.

I am very grateful to Prof. Dr. Ayman Hussein Hosny for the precious time he spent to enhance the work in this research and for his intellectual and scientific assistance.

I wish to express my utmost gratitude to my supervisor, Dr. Mahmoud Mohamed El-Kateb, for his huge efforts, beneficial suggestions, and continuous encouragement to conduct this research. He devoted much of his valuable time for guidance and support.

I would like to dedicate this work to the soul of my parents, who have encouraged me to accomplish my PhD research. May god relieve their souls and convey my prayers to them for all their support.

A special mention of appreciation is given to my wife, daughters, brother, sister, and parents in law, who helped me through the difficult stages of preparing this thesis.

Above all, I thank Allah for giving me the strength and power to accomplish this work.

TABLE OF CONTENTS

Chapter 1: Introduction	1
1.1 General	1
1.2 Scope and Objectives	3
1.3 Methodology	4
1.4 Thesis Organization	5
Chapter 2: Literature Review	7
2.1 General	7
2.2 History of chimney evolution	7
2.3 Chimney Height	9
2.4 Chimney Diameter	10
2.5 Types of chimneys	11
2.5.1 Brick Chimneys	11
2.5.2 Concrete Chimneys	12
2.5.3 Steel Stacks	14
2.6 Chimney Liners	15
2.6.1 Steel Liner	16
2.6.2 Brick Liner	18
2.6.3 Concrete liners	19
2.6.4 Fiberglass Reinforced Plastic Liners	20
2.6.5 Borosilicate glass blocks Liners	20
2.7 Coating and Lining	21
2.7.1 Introduction	21
2.7.2 Types of Lining	21

2.7.2.1 Bituminous Based	21
2.7.2.2 Cement Based	22
2.7.2.3 Ceramic Based	22
2.7.2.4 Cladding	22
2.7.2.5 Elastomer	22
2.7.2.6 Duromer	23
2.7.2.7 Inorganic	23
2.7.2.8 Noble Metal	23
2.7.2.9 Organic	23
2.7.2.10 Polycondensate	23
2.7.2.11 Polymer	24
2.7.2.12 Silicate Based	24
2.7.2.13 Thermoplastic	24
2.7.2.14 Wallpapering	24
2.8 Inspection and maintenance	24
2.8.1 Introduction	24
2.8.2 Inspection	25
2.8.2.1 Minor Routine Inspection	26
2.8.2.2 Major Inspection	26
2.8.3 Maintenance	26
2.9 Concrete chimney construction	29
2.9.1 Forms	29
2.9.1.1 Slipforming system	30
2.9.1.2 Jump Form system	32
2.9.2 Concrete Pouring and curing	33
2.9.3 Concrete Strength and Mix design	34
2.10 Chimney components	35
2.10.1 Chimney Accessories	35

2.10.2 Access requirements	35
2.11 Chimney foundation	36
2.11.1 Raft foundation	36
2.11.2 Deep foundation	37
2.11.3 Foundation analysis	38
2.11.4 Foundation Load	39
2.11.5 Foundation design	40
2.12 Chimney Loads	41
2.12.1 Gravity Load	41
2.12.2 Temperature Load	41
2.12.3 Wind Load	43
2.12.4 Earthquake Load	46
concrete chimneys subjected to lateral loads 3.1 Chimney Description	
3.1 Chimney Description	48
3.2 Chimney Technical Data	52
3.3 Chimney gravity load	52
3.3.1 Dead weight of stack	52
3.3.2 Liner and supporting slabs	53
3.3.3 Calculation of gravity loads	53
3.4 Chimney wind load	55
3.4.1 Along-wind load	55
3.4.2 Across-wind load	60
3.4.3 Circumferential Bending	63
3.5 Chimney seismic load	63
3.5.1 Input data for seismic calculation	63
3.5.2 Global effects, simplified model	66
3.5.2.1 Calculation model	

3.5.2.2 Eigen value analysis	69
3.5.2.3 Results of calculation	70
3.6 Reinforcement Design	72
3.6.1 Principles of the reinforcement design – strength r	method73
3.6.2 Calculation procedure	73
3.6.3 Interactive diagrams, carrying capacity check	77
3.6.4 Circumferential reinforcement	82
3.7 Chimney Wind in Egyptian code	84
3.7.1 General	84
3.7.2 Evaluation of chimney wind load	84
models used in Egyptian power plants under seismic load	89
4.2 Chimney Solid Model	
4.2 Chilling Solid Wodel	
4.2.1 Model description	
4.2.3 Eigen Value Analysis	
4.2.4 Mode Shapes	
4.2.5 Chimney Static Loads	
4.2.6 Loading combinations	
4.2.7 Results of Static Calculation	
4.2.7.1 Deflection	
4.2.7.2 Local stresses in concrete	
4.3 Chimney Shell Model	
4.3.1 Model description	
4.3.2 Basic schemes of the model	
4.3.3 Eigen Value Analysis	

4.3.4 Mode Shapes	112
4.3.5 Chimney Static Loads	116
4.3.6 Loading combinations	116
4.3.7 Results of Static Calculation	118
4.3.7.1 Deflection	118
4.3.7.2 Local stresses in concrete	119
4.4 Chimney Seismic Analysis	123
4.4.1 Chimney Solid Model	123
4.4.1.1 Displacements	123
4.4.1.2 Results of calculation	125
4.4.1.3 Stresses in concrete	131
4.4.2 Chimney shell Model	134
4.4.2.1 Displacements	134
4.4.2.2 Results of calculation	135
4.4.2.3 Stresses in concrete	142
4.5 Analysis of Results	146
4.6 Chimney Time History Wind Analysis	152
4.6.1 General	152
4.6.2 Chimney Beam Model	153
4.6.3 Wind Spectrum	156
4.6.4 Time History Analysis	170
4.6.4.1 Eigen Values	170
4.6.4.2 Displacements	171
4.6.4.3 Mode Shapes	173
4.6.4.4 Summary of Model Straining Actions	174
4.6.5 Comparison between Static and Time History	178

Chapter 5: Parametric study for the types of chimneys used in Egypt	
5.1 General	
5.2 Parametric study by changing chimney diameter	31
5.2.1 Wind analysis for chimneys with different diameters 18	32
5.2.2 Chimney section strength for various chimney diameters 18	32
5.2.3 Chimney deflection for various chimney diameters 18	34
5.2.4 Chimney Local stresses for various chimney diameters 19	€1
5.2.5 Summary of Parametric study by changing chimney diameted	
5.2.6 Summary of deflection, local stresses and reinforcement ratifor various chimney diameters and thicknesses	
5.3 Parametric study by changing chimney height)8
5.3.1 Wind analysis for chimneys with different heights 20)9
5.3.2 Chimney section strength for various chimney heights 20)9
5.3.3 Chimney deflection for various chimney heights	10
5.3.4 Chimney Local stresses for various chimney heights 22	20
5.3.5 Summary of Parametric study by changing chimney height	30
5.3.6 Summary of deflection, local stresses and reinforcement ratio for various chimney heights and thicknesses	
5.4 Data Analysis and graphs	38
Chapter 6: Summary, Conclusion and Recommendations . 24	ļ4
6.1 Summary	14
6.2 Conclusion	1 9
6.3 Recommendations	54
References: 25	:5

Appendices:	263
Appendix (A) Chimney wind analysis for vario	• •
Appendix (B) Chimney section strength for var	-
diameters & thicknesses	295

LIST OF FIGURES

Figure 2.1: Concrete chimney with Brick liner – Typical arrangement	13
Figure 2.2: Typical Section of Slipform	31
Figure 2.3: Jump-form system arrangement	32
Figure 2.4: Complex chimney foundations for weak soils	37
Figure 2.5: Cross section of a typical piled chimney foundation	38
Figure 2.6: Steel Chimney with helical strakes at the top third	45
Figure 3.1: Chimney section plan at bottom level (0.00)	49
Figure 3.2: Chimney section Elevation at bottom level	49
Figure 3.3: Design Response Spectrum	65
Figure 3.4: Simplified seismic model with the first 5 mode shapes	68
Figure 3.5: Amplitudes of displacements along the height of the chimney	70
Figure 3.6: Stress-Strain diagram for hollow section with one opening in compression zone	74
Figure 3.7: Stack at -1,00 D11,50 d10,60, wall 450 mm, interactive diagrafor reinf. $5R12/m$ both sides ($\rho t = 0.26\%$), $\phi Mn/Mu = 0.93$	
Figure 3.8: Stack at -1,00 D11,50 d10,60, wall 450 mm, interactive diagrafor reinf. $5R14/m'$ both sides (pt =0.35%), φ Mn/Mu=1.0	
Figure 3.9: Stack at -1,00 D11,50 d10,60, wall 450 mm, interactive diagrafor reinf. $5R16/m'$ both sides (pt =0.44%), φ Mn/Mu=1.07	
Figure 4.1: Solid Model lower part with door and flue gas duct openings	90
Figure 4.2: Solid Model upper part with top slab	91
Figure 4.3: Solid Model corbels at the annular plates levels	91
Figure 4.4: Solid Model half-transition part between chimney thickness 0.45m and 0.3m	92
Figure 4.5: Solid Model vertical half-section in lower part	
Figure 4.6: Solid Model vertical half-section in upper part	93
Figure 4.7: Solid Model 1st Eigen mode in X direction	97
Figure 4.8: Solid Model 2nd Eigen mode in Z direction	97
Figure 4.9: Solid Model 3rd Eigen mode in Z direction	
Figure 4.10: Solid Model 4th Eigen mode in X direction	