TAXONOMICAL AND ECOLOGICAL STUDIES OF THRIPS SPECIES IN AN OLIVE GROVE IN ISMAILIA GOVERNORATE

By

MAALY EASA ABDALLA WAFY

B.Sc. Agric. Sci. (Pomolgy), Fac. Agric., Cairo Univ., Egypt, 2003. M.Sc. Agric. Sci. (Pomolgy), Fac. Agric., Cairo Univ., Egypt, 2009

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Economic Entomology)

Department of Economic Entomology and Pesticides
Faculty of Agriculture
Cairo University
EGYPT

2018

Format Reviewer

Vice Dean of Graduate Studies

APPROVAL SHEET

TAXONOMICAL AND ECOLOGICAL STUDIES OF THRIPS SPECIES IN AN OLIVE GROVE IN ISMAILIA GOVERNORATE

Ph.D. Thesis In Agri. Sci. (Economic Entomology)

By

MAALY EASA ABDALLA WAFY

B.Sc. Agric. Sci. (Pomolgy), Fac. Agric., Cairo Univ., Egypt, 2003. M.Sc. Agric. Sci. (Pomolgy), Fac. Agric., Cairo Univ., Egypt, 2009

Approval Committee Dr. ABD El-RAHMAN GAMAL El-DIN ABD El-RAHMAN Researcher Professor of Pesticide, Plant Protection, Desert Researches Center. Dr. El- SAID SADEK HEGAZI Professor of Pomology, Fac. Agric., Cairo University. Dr. IMAN IBRAHIM EL-SEBAEY Head Research, Plant Protection, Research Institute, Agriculture Research Center Dr. ESSAM ABD EL-MAGUIED AGAMY Professor of Entomology, Fac. Agric., CairoUniversity. Date: 23 / 10 /2018

SUPERVISION SHEET

TAXONOMICAL AND ECOLOGICAL STUDIES OF THRIPS SPECIES IN AN OLIVE GROVE IN ISMAILIA GOVERNORATE

Ph.D. Thesis
In
Agri. Sci. (Economic Entomology)

 $\mathbf{B}\mathbf{y}$

MAALY EASA ABDALLA WAFY

B.Sc. Agric. Sci. (Pomolgy), Fac. Agric., Cairo Univ., Egypt, 2003. M.Sc. Agric. Sci. (Pomolgy), Fac. Agric., Cairo Univ., Egypt, 2009

SUPERVISION COMMITTEE

Dr. ESSAM ABD EL-MAGUIED AGAMY Professor of Entomology, Fac. Agric., Cairo University.

Dr. MONIR MOHMMED EL-HUSSEINI Professor of Entomology, Fac. Agric., CairoUniversity.

Dr. IMAN IBRAHIM EL-SEBAEY
Head Research, Plant Protection, Research Institute, Agriculture
Research Center

Name of Candidate: Maaly Easa AbdAllah Wafy

Title of Thesis: Taxonomical and ecological studies of thrips species in

an olive grove in Ismailia governorate

Supervisors: Dr. Essam Abdel-Maguied Agamy

Dr. Monir Mohmmed El-Husseini

Dr. Iman Ibrahim El-Sebaey

Department: Economic Entomology and Pesticides **Branch:** Entoomology

Approval: 23 /10/ 2018

ABSTRACT

Survey and taxonomy of thrips species in olive groves at Ismailia governorate were stuided during 2013 and 2014 on different cultivars (El-Agizi; Manzanillo and Picual) and associated weeds in olive groves. The effect of some weather factors and plant heights on seasonal abundance of certain dominant species (Haplothrips Dendrothrips eremicola cahirensis karny; Priesener) investigated. The primers ITS4A, 28S rRNA, 18S rRNA and the primer pairs COI-1 + COI-2 + COI-3 were used to identify the dominant thrips species and Sericothrips kassimanus Priesener). Seven species belong to six genera, four subfamilies and two families were recorded throughout this study i.e.: H. cahirensis Karnv: kassimanus Priesener: D. eremicola Priesener: Frankliniella occidentalis (Pergaade); Thrips tabaci Lindeman; T. microchatus Karny and Scirtothrips aurantii Faure. A significant positive correlation between the mean temperature and the mean numbers of thrips and negative correlation between the mean relative humidity and thrips population have been noticed. The highest number of dominant species was observed at low level (60cm.) followed by medium (120cm.) while high level (200 cm.) harboured the lowest numbers. DNA sequence data for 18S rRNA gene showed appositive response to the three species. DNA sequences of the species based on 18S rRNA were recorded in the Gene Bank. The phylogenetic tree of the three thrips species was given also.

Keywords: Thysanoptera, thrips, olive, Ecology, Morphology, 18s rRNA.

DEDICATION

I dedicate this work to whom my heart felt thanks; to my mother and my father for their patience and help, as well as to my brother Sameh, hasband Ahmed, my children Maryam, Menna and Aser and all my feriends for all the support they lovely offered along the period of my post graduation.

ACKNOWLEDGEMENT

I wish to express my sincere thanks, deepest gratitude and appreciation to **Dr. Essam Abd El- Maguied Agamy** Professor of Entomolgy, Faculty of Agriculture, Cairo University, for effective supervision, guidance and interest promoted this work and for his kind help and supplying materials in order to complete this work in his own vineyard.

gratitude is also extended to **Dr. Momir Mohmmwd El-Husseini** Professors of Entomology, Faculty of Agriculture, Cairo University for suggesting the problems, supervision, continued assistance and guidance through the course of study and revision of manuscript.

Also, I wish to express my special thanks and deep gratitude to **Dr. Iman Ibrahim El-Sebaey**, Head Research of Entomology, Plant Protection Research Institute Agriculture Research Center for greatest support, guidance through the course of study and sharing in supervision.

Grateful appreciation is also extended to **Dr. Mohamed Mohamed Abo-Setta**, Head Research of Entomology, Plant
Protection Research Institute, Agriculture Research Center for
greatest support.

Grateful appreciation is also extended to **Eng. Mohamed El-Kholy**, The owner of olive farm for greatest support.

CONTENTS

INTRODUCTION				
REVIEW OF LITERATURE 1. Economic importance of thrips 2. Symptoms of thrips species injury on olive tree 3. Ecological studies				
			a. Survey of thrips species on olive trees	
			b. Population fluctuation of thrips on olive trees	
			c. Effect of plant height on thrips population	
4. Taxonomical study (Molecular study)				
MATERIALS AND METHODS				
RESULTS AND DISCUSSION				
1. Ecological study				
a. Survey of thrips species on olive trees and associate weeds	ed			
b. Seasonal abundance of dominated thrips species of olive trees				
c. Susceptibility of olive cultivars on thrips infestation				
d. Effect of plant heights on thrips population				
e. Effect of weather factor on population density of				
thrips species				
 Effect of mean temperature on thrips population. Effect of mean relative humidity on thrips population. 	· • •			
2. Taxonomical study				
a. Morphological study				
Taxonomic chracteristics of order Thysanoptera				
2. Taxonomic characters and Terminology				
3. Description of studied species				
b. Molecular studies				
SUMMARY				
REFERENCESARABIC SUMMARY				
ANADIC SUIVIVIAN I				

LIST OF TABLES

No.	Title	Page
1	Total numbers of thrips species attacking olive orchard of three cultivars (El-Agizi; Manzanillo and Picual) and	
	associated weeds grown at Ismailia Governorate during 2013 and 2014	20
2	Thrips species on olive tree in Egypt.	22
3	Records of <i>D. eremicola</i> inspected on three olive	
	cultivars during 2013 season	24
4	Records of <i>D. eremicola</i> inspected on three olive	
_	cultivars during 2014 season.	25
5	Records of <i>H. cahirenins</i> inspected on three olive	21
6	cultivars during 2013 season. Records of <i>H. cahirenins</i> inspected on three olive	31
U	cultivars during 2014 season.	32
7	Susceptibility of olive cultivars on thrips infestation in	3 2
	2013 and 2014.	36
8	Effect of plant height on <i>D. eremicola</i> population in 2013	
0	and 2014 season.	38
9	Effect of plant height on <i>H. cahirensis</i> population in 2013 and 2014 season.	38
10	Simple correlation (r) and regression (b) of mean	36
10	temperature on the population density of <i>D. eremicola</i>	
	during 2013 and 2014.	43
11	Simple correlation (r) and regression (b) of mean	
	temperature on the population density of <i>H. cahirensis</i>	4.0
10	during 2013 and 2014.	43
12	Simple correlation (r) and regression (b) of mean relative humidity on the population density of <i>D. eremicola</i>	
	during 2013 and 2014.	44
13	Simple correlation (r) and regression (b) of mean relative	
	humidity on the population density of H. cahirensis	
	during 2013 and 2014.	45
14	Host plants of studied species in Egypt	75-76
15	Morphmetrics of thrips species on olive trees at Ismailia	
	Governorate (µ)	77

16	The sequencing of the used primers and their response to	
	thrips species	123
17	18S r RNA gene of the thrips species compared with	
	othersequences from National Center for Biotechnology	
	Information (NCBI).	124

LIST OF FIGURES

No.	Title	Page
1	Symptoms of injury of thrips on olive leaves and fruit	4
2	Population density of thrips species attacking olive orchard of three cultivars and associated weeds grown during 2013 and 2014	21
3	a. Records of temperature and relative humidity during 2013b. Population fluctuation of <i>D. eremicola</i> in olive	26
4	a. Records of temperature and relative humidity during 2014	2627
5	cultivars during 2014	2733
6	cultivars during 2013	33 34
7	cultivars during 2014 Effect of olive cultivar on <i>D. eremicola</i> population in 2013 and 2014	34 36
8	Effect of olive cultivar on <i>H. cahirensis</i> population in 2013 and 2014.	36
9	Effect of plant height on <i>D. eremicola</i> population in 2013 and 2014	39
10	Effect of plant height on <i>H. cahirensis</i> population in 2013	40
11	Head and thorax of Tubulifern thrips	48
12	Ocellar + postocellar setae	48
13	Fourth antennal segment (sense cone)	49
14	Thorax setae	49

15	Campaniform sensilla	51
16	Forewing veins	51
17	Mesonotum and metanotum.	52
18	Tergite VIII	52
19	Sternite VIII	54
20	Microtrichia	54
21	Weeds associated with olive trees.	55
22	Classification of studied thrips species	56
23	Last abdominal tergite (Tubulifera)	59
24	Last abdominal tergite (Terebrantia)	59
25	Forewing (Tubulifera)	59
26	Forewing (Terebrantia)	60
27	Metanotumfurca (Dendrothrips eremicola)	60
28	Forewing (D. eremicola)	60
29	Abdominal tergites (Scirtothrips aurantii)	61
30	Tergite VIII (Frankliniella occidentalis)	61
31	Tergite VIII (Thrips	61
32	Forewing (Thrips tabaci	62
33	Pleurotergite (<i>T. tabaci</i>	62
34	Forewing (T. microchatus)	62
35	Pleurotergite (<i>T. microchatus</i>	63
36	Haplothrips cahirensis (female	69
37	H. cahirensis (antennae)	69
38	H. cahirensis (fore tarsus+ fore tibiae)	70
39	H. cahirensis (postocular setae)	70

40	H. cahirensis (antennal segment IV)	71
41	H. cahirensis (maxillary stylets + bridge)	71
42	H. cahirensis (mouth cone	72
43	H. cahirensis (pronotal setae = major setae)	72
44	H. cahirensis (pronotum)	72
45	H. cahirensis (hind tarsus)	73
46	H. cahirensis (tergite I)	73
47	H. cahirensis (tergite II-VIII)	74
48	H. cahirensis (tergite X)	74
49	Sericothrips kassimanus (male)	83
50	S. kassimanus (antennae)	84
51	S. kassimanus (head)	84
52	S. kassimanus (antennal segment III)	85
53	S. kassimanus (pronotum)	85
54	S. kassimanus (metanotum)	86
55	S. kassimanus (forewing)	86
56	S. kassimanus (tergites V-VII)	86
57	S. kassimanus (tergite VIII)	87
58	D. eremicola (female)	91
59	D. eremicola (head)	91
60	D. eremicola (head)	91
61	D. eremicola (mouth cone)	92
62	D. eremicola (pronotum)	92
63	D. eremicola (mesonotum)	92
64	D. eremicola (pronotum)	93

65	D. eremicola (hind tibiae+ tarsus)	93
66	D. eremicola (tergits I-IV)	93
67	D. eremicola (tergits VII-VIII)	94
68	D. eremicola (tergits IX-X)	94
69	Frankliniella occidentalis (ocellar setae)	99
70	F. occidentalis (antennal segments III, IV)	99
71	F. occidentalis (pronotum)	99
72	F. occidentalis (female)	100
73	F. occidentalis (antennae)	100
74	F. occidentalis (mouth part)	101
75	F. occidentalis (metanotum)	101
76	F. occidentalis (fore tibiae+ tarsus)	102
77	F. occidentalis (pleurotergite)	102
78	F. occidentalis (tergite VII)	103
79	F. occidentalis (tergites IV-VII)	103
80	T. tabaci (female)	107
81	T. tabaci (antennae)	108
82	T. tabaci (ocellar setae)	108
83	T. tabaci (pronotum)	109
84	T. tabaci (mesonotum)	109
85	T. tabaci (meso + metanotum)	109
86	T. tabaci (tergites II-VII)	110
87	T. microchatus (female)	112
88	T. microchatus (antennae)	112
89	T. microchatus (pronotum)	113

90	T. microchatus (hind tarsus+ tibiae)	113
91	T. microchatus (tergite VIII)	114
92	T. microchatus (sternits IV -V)	114
93	Scirtothrips aurantii (female)	117
94	Sc. aurantii (antennae)	117
95	Sc. aurantii (mouth part)	118
96	Sc. aurantii (pronotum)	118
97	Sc. aurantii (metanotum)	118
98	Sc. aurantii (forewing)	119
99	Sc. aurantii (tergites V-VII)	119
100	Sc. aurantii (tergite VIII)	119
101	Sc. aurantii (sternitVII)	120
102	Agarose gel DNA electrophoresis for PCR of thrips species: 1- H. cahirensis, 2- D. eremicola, 3- Hy. kassimanus.	121
103	Phylogenetic tree analysis for the relationships between <i>D. eremicola</i> and other related species recorded in NCBI based on 18S r RNA gene	126
104	Phylogenetic tree analysis for the relationships between <i>Hy. Kassimanus</i> and other related species recorded in	
105	NCBI based on 18S r RNA gene Phylogenetic tree analysis for the relationships between H. cahirensis and other related species recorded in NCBI based on 18S r RNA gene.	127 128
	DASCO OHTAA EKINA YEHE	1.7.8

INTRODUCTION

The olive trees, *Olea europapea* L. is an important economically subtropical crop. The olive is used in many purposes such as pickling, oil extraction and the remains of fruits are used as fodder for domestic animals. The olive trees originated in the Eastern Mediterranean area since ancient times. In Egypt, it has been cultivated for thousands of years. It is considered as the second crop after citrus. The area under cultivation with olive reached 237,454 feddans (Fed = 2400 m²) in 2014. Ismailia governorate has the largest area in Lower Egypt *i.e.* 19,691 feddans. (Ministry of Agriculture and land reclamation, Economic Affairs Sector, 2014)

Olive tree is attacked by a wide range of arthropods, but little attention has been given to thrips (Insecta: Thysanoptera). Thrips feed by puncturing the epidermal (outer) layer of host tissue and sucking out the cell contents, which results in stippling, discolored flecking, or silvering of the leaf surface. They can induce a range of symptoms in plant tissue by their feeding as scaring on fruits or leaves and flower deformation or reducing pollen critical levels. Also, thrips are vectors of a series of plant damaging viruses (tospoviruses). Moreover, it is inducing leaf gall in some ornamental plants. Thrips feeds on tender parts of the olive tree such as buds, developing leaves, developing inflorescences, flowers, fruits and tender bark causing leaf deformation, yellowish white blotches on lower surfaces, leaf curl, leaf defoliation, fruit deformation with deep hollows in ripe olive, fruit defoliation when attacked in early season, and also infested fruit become smaller. Furthermore, in 2009 the thrips