

FACULTY OF ENGINEERING

Application of Optimization Techniques to Antennas

A thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Engineering Mathematics and Physics and Engineering Mechanics (Engineering Mathematics)

by

Passant Khaled Mohamed Abbassi

Bachelor of Science in Electrical Engineering

Faculty of Engineering – German University in Cairo - 2012

Supervised by

Prof. Abdelmegid Mahmoud Allam Faculty of Engineering – German University in Cairo

Prof. Niveen Mohamed Khalil Badra Faculty of Engineering – Ain Shams University

Dr. Ahmed Mohamed Ibrahim El-Rafei Faculty of Engineering – Ain Shams University

Cairo - (2018)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Physics and Mathematics

Application of Optimization Techniques to Antennas

by

Passant Khaled Mohamed Abbassi

Master of Science in Engineering Mathematics and Physics and Engineering Mechanics (Engineering Mathematics)

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Hamdy Mohamed Ahmed	
Faculty of Engineering, Al Sherouk University	
Associate Prof. Dr. Mahmoud AbdelRahman AbdelFattah	
Faculty of Engineering, Military Technical College	
Prof. Dr. Abdelmegid Mahmoud Allam	
Department of Electrical and Communication Engineering Faculty of Engineering, German University in Cairo	
Prof. Dr. Niveen Mohamed Khalil Badra	
Engineering Physics and Mathmatics	

Faculty of Engineering, Ain Shams University

Date: 04 October 2018

This is to certify that:

- (i) the thesis submitted for master degree in Engineering Mathematics, Faculty of Engineering, Ain-Shams University compromises only my original work towards the Master Degree.
- (ii) due acknowledgement has been made in the text to all other material used.

Signature

Passant Khaled Abbassi

Researcher Data

Name : Passant Khaled Abbassi

Date of birth : 15/09/1990

Place of birth : Cairo, Egypt

Academic Degree : B.Sc. in Electrical Engineering

University issued the degree: Faculty of Engineering,

German University in Cairo.

Date of issued degree : 2012

Current job : Teaching Assistant in Faculty of

Engineering, German University in Cairo.

ACKNOWLEDGEMENT

First and Foremost praise is to ALLAH, the Almighty, on whom ultimately we depend for sustenance and guidance. I would like to thank Almighty Allah for giving me opportunity, determination and strength to do my research.

I would like to express my sincere appreciation and gratitude to my professors Dr.Abdelmegid Allam and Dr.Nivin Badra for their patience, motivation, support and enthusiasm in mentoring me throughout this research. Thanks to my supervisor Dr.Ahmed Ibrahim for his guidance, advices and persuasively conveys me the concept of expanding my research.

I would like to thank my colleagues and friends Nayera, Engy, Deena, Rana, Lamia, Maha and Alyaa for their support. I am really grateful to Naryman El-Sherif, Sara Helmi, Nouran Arafat, and Rania Saeed for being such an inspiration, standing by my side in tough times and believing in me. I would like to thank Dr.Khaled Abdelgaber for his guidance, support and encouraging me to keep moving forward.

Special thanks to my parents Khaled Abbassi ,Nivin Abbassi and my siblings Mohamed, Dalia, Nivin and Abbassi for their abiding love in the moments when there is no one to answer my queries. Really, I wouldn't be who I am without you.

Last but not least, I would like to thank my role models Prof.Dr.Mustafa Amer and Mr.Amin selim whom did not give up on me and always believed in me; May ALLAH rest their souls in peace. This thesis is dedicated to my beloved grandpa, who rested in heaven since October 2017 and my cherished grandma, who rested in heaven since June 2018.

Passant Khaled Abbassi 2018

Abstract

"Application of Optimization Techniques to Antennas"

In recent years, modern wireless communication systems and information transfer have highlighted the major need for antenna design advancements as an essential part of any wireless system. Microstrip patch antenna fulfills the desired wireless systems' necessities. These antennas have triggered extensive research due to their significant advantages which includes compact size, low profile, light weight, low volume, relatively low manufacturing cost, ease of fabrication, and compatibility with integrated circuits. Microstrip patch antennas have led to diversified applications utilizing microwave systems such as biomedical systems, radars, mobile, satellite communications, and global positioning satellite (GPS).

The main aim of this thesis is utilizing evolutionary algorithms to design a low profile and efficient antenna which can be attained in the antenna design construction to meet the extensive emerging applications in wireless communication systems. Evolutionary algorithms have emerged as a promising solution to optimize some designs of microstrip antenna seeking an efficient performance in addition to compromising competing goals simultaneously. Two distinct design geometries have been implemented in the scope of this research.

Evolutionary algorithms are applied to cross aperture coupled circularly polarized microstrip antenna which is designed to attain a low axial ratio over a wide bandwidth and optimal impedance matching. The microstrip antenna is designed. A 50Ω microstrip feed line is used. A software simulation program (CST microwave studio) is used to compare the performance of the antenna in terms of return loss and axial ratio with evolutionary algorithms. Two distinct evolutionary algorithms; Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) have been utilized in the fitness function optimization to ensure optimal axial ratio and impedance matching. The optimal patch dimensions, the aperture length, and the microstrip feed line length are obtained from both methods and their performances are compared. Moreover, the antenna is fabricated and the network analyzer is used for measuring the return loss. A

comparative analysis is carried out demonstrating a high agreement between measured and simulated return loss.

Moreover, the artificial neural networks (ANNs) is employed in WiFi antenna design and modeling where ANN is used to predict the antenna characteristics to be compatible with the demand of wireless communication devices. The ANN is favored over other modeling techniques as it models non-linear relationships between the antenna input and output, needs less computation time compared to computer aided designs that use numerical methods intensively as well as reduction of mathematical computational complexties. Thus, the ANN is employed to model the antenna design parameters. This is attained by the use of ANN toolbox with the aid of MATLAB.

The ANN prior training data set is provided by CST simulator. The ANN is trained using Feed Forward Back propagation algorithm by adjusting the weights to model the particular learning task. The feed forward and back propagation is repeated until the error is minimal enough. Finally, the antenna is analyzed and verified against manifuctured antenna achieving compatiable results.

Keywords: Microstrip Antenna, Particle Swarm Optimization, Genetic Algorithm, Artificial Neural Networks, WiFi Antenna.

Table of Contents

Acknowledgment
NotationXI
1. INTRODUCTION1
1.1 Motivation1
1.2 Scope and outline of the thesis3
2. OPTIMIZATION TECHNIQUES6
2.1 Global optimization6
2.2 Multi-objective optimization
2.2.1 Classical vector optimization8
2.2.1.1 Weighted sum9
2.2.1.2 Epsilon constraint vector optimization11
2.2.2 Computational intelligence11
2.2.2.1 Genetic algorithms
2.2.2.1.1 Representation and initialization15
2.2.2.1.2 Fitness function
2.2.2.1.3 Selection
2.2.2.1.3.1 Population decimation17
2.2.2.1.3.2 Roulettee wheel selection17
2.2.2.1.3.3 Tournament selection
2.2.2.1.4 Genetic operators
2.2.2.1.4.1 Crossover
2.2.2.1.4.2 Mutation
2.2.2.1.5 Convergence

2.2.2.2 Particle swarm optimization	20
2.2.2.2.1 Parameters	21
2.2.2.2 Particle swarm optimization algor	
2.2.2.2.3 Fitness function	24
2.2.2.2.4 Personal best and global best	24
2.2.2.5 Geometric illustration	25
2.2.2.3 Artificial neural networks	26
2.2.2.3.1 Why artificial neural networks?	27
2.2.2.3.2 Human and artificial neurons	28
2.2.2.3.3 Architecture of artificial neural networks	28
2.2.2.3.3.1 Number of nodes and layers	
2.2.2.3.3.2 Setting weights	
2.2.2.3.3.3 Running and training neural netwo	
2.2.2.3.3.4 Activation function	31
2.2.2.3.3.5 Back propagation algorithm	32
2.2.2.3.3.6 Learning techniques	35
2.2.2.4 Comparison of distinct evolutionary algorithms	35
3. ANTENNAS AND APPLICATIONS	
3.1 Microstrip patch antenna	
3.1.1 Feeding techniques	
3.1.2 Microstrip antenna modeling	
3.1.2.1 Cavity model analysis	
3.1.2.2 Transmission line model analysis	
3.1.3 Wave polarization	
<u>*</u>	

3.1.3.1 Circular polarized microstrip antenna fe	
structure	49
3.2 Aperture coupled microstrip antenna	49
3.2.1 Transmission line modeling of cross aper coupled circularly polarized patch antenna	
3.2.1.1 The derivation of matching objective function	51
3.2.1.2 The derivation of axial ratio objective function	53
3.3 Literature review	54
3.3.1 Aperture coupled circularly polarized pate antenna	
3.3.2 WiFi antenna design and modeling using artificial neural networks	55
4. APPLICATION OF MULTI-OBJECTIVE GENE ALGORITHM AND PARTICLE SWARM OPTIMIZATION TO APERTURE COUPLED CIRCULARLY POLARIZED MICROSTRIP ANTEN	NA
4.1 Introduction	
4.2 Antenna design with multiple-objective optimization	
4.3 Mathematical model	
4.3.1 Genetic algorithm implementation	65
4.3.2 Particle swarm optimization implementat	
4.4 Results and discussion	71
4.5 Summary	74
5. WIFI ANTENNA DESIGN AND MODELING USING ARTIFICIAL NEURAL NETWORKS	
5.1 Introduction	
	,

5.2	Antenna design	76
5.3	Artificial neural network architecture an	_
5.4	Results and discussion	84
5.5	Summary	92
6. CC	NCLUSION AND FUTURE WORK	94
6.1	Conclusion	94
6.2	Future work	95
Refere	nces	96

List of Figures

Figure 2.1 Pareto optimum curve
Figure 2.2 Particle swarm optimization position and
velocity update
Figure 2.3 Biological neuron
Figure 2.4 Structure of artificial neural network30
Figure 2.5 Artificial neural network process32
Figure 3.1 Microstrip antenna39
Figure 3.2 Microstrip patch antenna configuration39
Figure 3.3 Microstrip antenna feeding configurations40
Figure 3.4 Equivalent circuits of microstrip antenna feeding
techniques
Figure 3.5 Microstrip antenna charge and current
distribution45
Figure 3.6 Rectangular microstrip antenna equivalent
circuit46
Figure 3.7(a) Rectangular patch transmission line model 47
Figure 3.7(b) Equivalent circuit47
Figure 3.8 Polarization types
Figure 3.9 Distinct single feed square patch antenna50
Figure 3.10 Transmission line model equivalent circuit51
Figure 4.1 Structure of designed cross aperture coupled
microstrip antenna using microstrip feed line61
Figure 4.2 Cross aperture coupled microstrip antenna
geometry using microstrip feed line
Figure 4.3 Genetic algorithm flow chart
Figure 4.4 Particle swarm optimization flow chart70
Figure 4.5 Antenna simulated and measured return loss
using GA and PSO71

Figure 4.6 Antenna simulated axial ratio using GA and
PSO72
Figure 4.7 Fabricated antenna using optimal dimensions73
Figure 4.8 Scattering parameter S_{11} is measured using
network analyzer73
Figure 5.1 Designed antenna geometric structure77
Figure 5.2 Artificial neural network structure79
Figure 5.3 Training performance83
Figure 5.4 Training regression plot84
Figure 5.5 Simulated and estimated antenna return loss for
varying R188
Figure 5.6 Simulated and estimated antenna gain for
varying R188
Figure 5.7 Simulated and estimated antenna return loss for
varying R289
Figure 5.8 Simulated and estimated antenna gain for
varying R289
Figure 5.9 Simulated and estimated antenna return loss for
varying R390
Figure 5.10 Simulated and estimated antenna gain for
varying R390
Figure 5.11 Fabricated proposed antenna and its measured
return loss91
Figure 5.12 Antenna simulated and measured return loss91
Figure 5.13 Designed antenna radiation pattern at 2.4GHz 92
Figure 5.14 Designed antenna surface current92

List of Tables

Table 2.1 Fitness evaluation example	16
Table 2.2 Single point crossover	19
Table 2.3 Neural network activation function	31
Table 4.1 Applications of aperture coupled microstrip	
antennas and their frequencies	59
Table 4.2 Designed microstrip antenna dimensions	
Table 4.3 Boundaries of design parameters	66
Table 4.4 Optimal design parameters of the antenna u	sing
GA and PSO	72
Table 5.1 Antenna design parameters	77
Table 5.2 Neural network parameters	79
Table 5.3 Boundaries of input design parameters	80
Table 5.4 ANN training data	80
Table 5.5 Comparison between simulated and estim	ated
testing data	85
Table 5.6 MSE for return loss and gain	87
Table 5.7 Mean and standard deviation error for re-	
loss and gain	87

Notation

Abbreviation	Description
GPS	Global Positioning Satellite
PSO	Particle Swarm Optimization
GA	Genetic Algorithm
ANNs	Artificial Neural Networks
MPA	Microstrip Patch Antenna
VOP	Vector Optimization Problem
CI	Computational Intelligence
pbest	Personal best
gbest	Global best
BP	Back Propagation
ABC	Artificial Bee Colony
DE	Differential Evolution
RFID	Radio Frequency Identification
ACO	Ant Colony Optimization
LM	Levenberg-Marquart
MSE	Mean Square Error
MLP	Multilayer Perceptron
FFBP	Feed-Forward Back-Propagation