Assessment of Uterine Cervical Cancer by Means of MR Spectroscopy

Thesis

Submitted for Partial Fulfillment of Master Degree in Radiodiagnosis

ByFarah Hasan Ali
M.B,B.Ch

Under Supervision of Prof. / Yasser Ali Mohamed Abdel-Mawla

Professor of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Dr. / Mona Ali Abdel-Wahed Ali

Lecturer of Radiodiagnosis
Faculty of Medicine – Ain Shams University

Faculty of Medicine - Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof.**/ **Masser Ali Mohamed Abdel-Mawla**, Professor of Radiodiagnosis - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr./ Mona Ali Abdel-Wahed Ali, Dr./ Mona Ali Abdel-Wahed Ali, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.**

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Farah Hasan Ali

To the person who is always beside me today I am successful because of you, My Mother. Thank you...

Farah Hasan Ali

List of Contents

Title	Page No.
List of Tables	6
List of Figures	7
List of Abbreviations	12
Introduction	1
Aim of the Work	16
Review of Literature	
Anatomy of the Uterine Cervix	17
Pathology of Uterine Cervical Cancer	32
Physical Principle of Magnetic Resonance Spectroscopy	51
 Technique of MRI Examination for Uterine Cer 	
MRI Features of Cervical Carcinoma with Pathological Correlation	
Patients and Methods	87
Results	93
Case Presentation	101
Discussion	125
Summary and Conclusion	130
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Magnetic resonance imaging protocol	for
Table (1).	cervical cancer staging	
Table (2):	Parameters of pelvic conventional MR	I89
Table (3):	Tumor Characterization Histopathological type	•
Table (4):	Descriptive statistical data of different MR Spectroscopy metabolites	
Table (5):	Descriptive statistical data analysis different FIGO system staging of tenrolled cervical cancer masses	the
Table (6):	Statistical correlation study betwee CH/CR ratio and the various study parameters	ied
Table (7):	Statistical correlation study betwee Lipid peak and the various study parameters	ied
Table (8):	Descriptive & comparative statistic data analysis between the varied studied parameters in cervical canonass & lipid peak	ous cer

List of Figures

Fig. No.	Title P	age No.
Figure (1):	Development of the Fallopian tubes, uterus	
	vagina from the paramesonephric (Müllerian) du	
7. (0)	and the urogenital sinus	
Figure (2):	Normal anatomy of the Uterus	
Figure (3):	Coronal section of the uterus and vagina	
Figure (4):	Sagittal view of female pelvis demonstrat	
T) (F)	cervical relations	
Figure (5):	Anatomy of female reproductive system vuterine and cervical ligaments	
Figure (6):	Blood supply of the uterus	
Figure (7):	Lymphatic drainage of the cervix	
Figure (8):	Normal appearance of the cervix	
Figure (9):	Normal female pelvis	
Figure (10):	Sagittal CT image obtained during the por	
C	venous phase (90-second delay) in a 39-year	
	woman with pelvic pain shows differen	
	enhancement between the cervix and the uterus	30
Figure (11):	Transvaginal color Doppler from a cervical cance	er31
Figure (12):	Showing the columnar-lined endocervical "gland	s"34
Figure (13):	Normal squamous epithelium	34
Figure (14):	Colposcopic view of squamocolumnar junction	35
Figure (15):	The histological grading of cervical intraepithe	
E: (1C).	neoplasia (CIN)	
Figure (16):	Cervical carcinoma with exophytic growth in a year-old woman	
Figure (17):	Cervical adenocarcinoma	
Figure (17): Figure (18):	Endocervical adenosqumous carcinoma	
Figure (19):	Schematic overview of the pulse sequences PRI	
rigure (19).	and STEAM	
Figure (20):	Cervical cancer stage IB in 42- years' old woman	59
Figure (21):	Sagittal T2-weighted MR images performed at	1.5
	Tesla showing the benefits of anti-peristaltic age	ents
	on image quality	63
Figure (22):	(a) Axial T2-weighted image (b) and DWI im	age
	(b = 800) with ADC map (c) of a 36 year old wor	
	with stage IIB low-grade squamous cell cerv	ical
	carcinoma	65

Fig. No.	Title Page	No.
Figure (23):	42 years old woman, stage IIB cervical carcinoma. A 2 cm hyper intense lesion is seen in the cervix, (a) with right parametrial invasion (c) and a beginning of left parametrial invasion.	66
Figure (24):	Dynamic contrast enhanced images, cervical cancer. Sagittal pre and early arterial (30 s) post contrast images	67
Figure (25):	A 50 year old female with squamous cell carcinoma of cervix (stage IB1)	
Figure (26):	A 39 year old female with carcinoma cervix (stage IB2)	71
Figure (27):	A 49-year-old female with adenocarcinoma of uterine cervix (stage IIA)	72
Figure (28):	Squamous cell carcinoma in a 40-year-old female (stage IIB).	
Figure (29): Figure (30):	A 65-year-old female with poorly differentiated squamous cell carcinoma (stage III A)	74
Figure (31):	(stage IIIB)	74
Figure (32):	Cervical cancer, stage IVB.	
Figure (33):	Cervical cancer, stage IIB.	
Figure (34):	Cervical cancer, stage IB2.	
Figure (35):	Cervical cancer, stage IIB	79
Figure (36):	Cervical cancer, stage IVB	81
Figure (37):	Cervical cancer, stage IVB	81
Figure (38):	Complete response of primary tumor in a 54-year- old woman with stage IIB cervical cancer treated with chemo radiotherapy	09
Figure (39):	Hyper intense mass in the cervix and upper vagina	രാ
rigure (00).	on pre-treatment	84
Figure (40):	Cervical stenosis in a 61-year-old woman with stage IIB cervical cancer treated with chemo	
Figure (41):	radiotherapy	
Figure (42):	Different histopathological types of the enrolled	
Figure (49):	cervical cancer masses	
Figure (43): Figure (44):	Grading of lipid peak in cancer cervix masses	

Fig. No.	Title	Page No.
Figure (45):	Grading of choline peak in cancer cervix masse	es96
Figure (46):	Grading of the enrolled cervical cancer masse FIGO system	-
Figure (47):	Correlation between lipid peak and choline is spectroscopy	n MR
Figure (48):	Correlation between lipid peak and Creatin	
Figure (49):	MRI sagittal T2 (b) axial T2 shows soft tissue	
Figure (49):	involving the cervix measuring about (5.3 cm)(AP x trans x CC) invading the parameter and involving the upper third of the vagin DWI shows restricted diffusion (d) Spectroshows lipid peak = 0.024ppm, creatin= 0.02 choline peak = 0.023 ppm. MRI (a) sagittal T1WI (b) coronal T2 WI shows involving the upper third of the vaging DWI shows lipid peak = 0.024ppm, creatin= 0.02 choline peak = 0.023 ppm.	Bx5x6 trium a (c) scopy ppm,
	0.15 ppm	
Figure (51):	MRI (a) sagittal T2 (b) axial T2 shows a ce mass (2.3*2.6*2.9) cm in dimensions, it prot through the cervical os, it has high signal into in T2. (c) DWI shows restricted diffusion spectroscopy shows moderate lipid peak = ppm, choline = 1 ppm and creatin = 2 ppm	rvical rudes ensity n (d) 12.5
Figure (52):	MRI (a) sagittal T2 (b) coronal T2 shows a ce soft tissue mass measuring (5*4*5.4 cm) extension to the lower uterine segment and tupper 1/3 of the vagina more at anterior vawall. On T2 intermediate signal intensity, h signal compared to the myometrium. (c) DWI diffusion restriction (d) spectroscopy shows peak=0.02 ppm, choline peak =0.01 ppm creatin = 0.004 ppm	with to the aginal aigher show lipid

Fig. No.	Title	Page	No.
Figure (53):	MRI (a) coronal T2 WI (b) sagittal T2 WI (5 cm) right anterolateral cervical mass exhibiting intermediate signal on T2, This extending to upper 2/3 of vagina anterio with no parametrial invasion (c) DWI restricted diffusion, (d) Spectroscopy sho peak = 0.075 ppm, choline= -0.005 ppm an 0.005 ppm	is seen orly, yet I shows ws lipid dd CR= -	110
Figure (54):	MRI (a) sagittal T2 WI (b) coronal T2 cervical lesion measuring (4.5 * 4* 3 cm), iso intense signal in T2, there is a focal are mass that show no clear fat plane between the recto sigmoid junction. (c) DWI show or restriction (d) spectroscopy shows lipid per ppm, choline = 0.2 ppm and creatin= 0.1 ppm	it shows ea of the n it and diffusion ak = 1.9	112
Figure (55):	MRI (a) sagittal T2 (b) axial T2 shows A soft tissue lesion is seen measuring about (8 x 6 cm) in the maximum CC, AP a dimensions respectively, it show extension whole length of the vagina sparing about the lower vagina, it shows intermediate statement T2WI, higher signal compared to the myor (c) DWI shows true diffusion restrict spectroscopy shows lipid peak = 0.00 choline=0.01 and creatin= 0.005 ppm	cervical 5.7 X 4.5 and TR n to the 1 cm of ignal on metrium ion (d) 8 ppm,	
Figure (56):	MRI (a) sagittal T2 (b) coronal T2 Williams (7*5*2.2 cm), the lower par uterus shows distention of the cavity will collection exerting mass effect on the right wall (c) DWI shows diffusion restrict spectroscopy shows lipid peak =1.3 ppm, ch 0.1 ppm and Creatin= -0.2 ppm	t of the th fluid tuterine ion (d) oline = -	116
Figure (57):	MRI (a) sagittal T2 WI (b) coronal T2 Williams measuring (6 * 5.5 * 5) of parametrial, lower uterine and upper invasion, low and isotense signal in T2 WI, mass is abutting the posterior bladder wall anterior rectal wall yet with no signs of it (c) DWI shows diffusion restriction Spectroscopy shows lipid peak = 1.7 ppm, peak = 1 ppm and creatin level= 0.5 ppm	VI show cm with vaginal and the and the nvasion. (d) choline	

Fig. No.	Title	Page No.
Figure (58):	restriction (d) spectroscopy shows lipid pea ppm, choline level= 1 ppm and creatin lev	lesion ladder ous T2 ffusion lk= 13 vel= 2
Figure (59):	mr. (a) sagittal T2 (b) axial T2 WI she cervical mass (9.6*5.6*4.4 cm) with extension anterior cervical lip, lower 1/3 of the vagina a external os, it has intermediate signal in T2, I signal in comparism to myometrium (c) DWI diffusion restriction (d) spectroscopy shows peak = 2.2 ppm, choline level = 0.2 ppm, C level= 0.1 ppm.	to the nd the higher shows s lipid
Figure (60):	MRI (a) axial T2WI (b) sagittal T2 WI sh cervical mass measured (4*3.3*3 cm), the cervical mass measured (4*3.3*3 cm), the cervical mass measured at the right laspect suggesting parametrial invasion extension to the lower uterine segment and part of the vagina, it shows intermediate sig T2 WI. (c) DWI shows restricted diffusion spectroscopy shows lipid peak = 0.007 ppm, clevel=0.001 ppm and creatin level = 0.002 ppm	nows a ervical lateral with upper gnal in on (d)

List of Abbreviations

Full term Abb. ADC: Apparent diffusion coefficient $ATP.....:Adenosine \ triphosphate$ B0....: Main magnetic field C.....: CarbonCHO.....: Choline CIN: Cervical intra epithelial neoplasia CIS.....: Carcinoma in situ CR: Creatin DCE: Dynamic contrast enhasment DNP Dynamic nuclear polarization DWI.....: Diffusion weighted imaging ESUR.....: European Society of Urogenital Radiology F.....:FluorineFOV.....: Field of view FSE Fast spin echo HPV: Human papilloma virus HSIL High grade squamous intra epithelial lesion LUCX.....: Lymphoma of uterine cervix ML....: Mobile lipid MRI...... Magnetic resonance imaging MRS.....: Magnetic resonance spectroscopy MSI.....: Magnetic spectrometry imaging NAA: N-acetyl aspartate P.....: Phosphorus PET......Positron emission tomography PPM: Parts per million PPP: Pentose phosphate pathway PRESS...... Point resolved spatially localized spectroscopy PSCC Papillary squamous cell carcinoma

List of Abbreviations (Cont...)

Abb.	Full term	
<i>RF</i>	: Radiofrequency	
<i>ROI</i>	: Region of interest	
<i>SCC</i>	: Squamous cell carcinoma	
SCJ	: Squamo columnar junction	
STEAM	: Stimulated echo acquisition mode	
<i>SVC</i>	: Single voxel spectroscopy	
<i>TE</i>	: Echo time	
<i>TR</i>	: Repetition time	
<i>US</i>	: Ultra sound	
<i>WI</i>	: Weighted image	

INTRODUCTION

The incidence of cervical cancer is higher in low-income Lead countries due to lack of screening programs while in incidence developed countries. the dropped implementation of the Papanicolaou smear test (Fields and Weiss, 2016).

Cervical cancer is a leading cause of mortality in women worldwide usually affecting females before the age of 50. However; older women remain at risk. Cervical cancer is both preventable and treatable (*Ferlay et al.*, 2013).

Prognosis of cervical cancer is highly depended on extent of the disease at diagnosis and, therefore, accurate staging is crucial for optimal management, So magnetic resonance imaging (MRI) with its excellent soft tissue imaging characteristics now plays an important role in many aspects of tumor staging, planning and delivery of radiotherapy, post treatment response assessment and surveillance (Fields and Weiss, 2016).

Unfortunately, despite advances in radiotherapy and the inclusion of chemotherapy in the standard plan for locally advances disease, local control has been unsatisfactory. This situation has changed only recently with the increasing implementation of MRI - guided brachytherapy (Fields and Weiss, 2016).

Currently, in cervical cancer patients, MRI is primarily used for the evaluation of tumor morphology and local extent, it accurately evaluates tumor features with a significant tumor size, growth, parametrial prognostic values, as infiltration and involvement of pelvic side walls or any adjacent organs as urinary bladder or rectum (Bourgioti et al., 2016). Moreover; MRI is a very valuable tool in assessing the spread of the tumor to local and distant lymph nodes. It also assesses the disease response to chemo radiation and differentiates residual or recurrent disease from radiation fibrosis. Thus, MRI is valuable in deciding the treatment strategies and the accuracy for determining tumor stage ranges from (75%-96%) (*Mahajan* et al., 2013).

Abnormal metabolism is a key tumor hallmark. Proton spectroscopy (¹H-MRS) magnetic resonance measurement of metabolite concentration that can be utilized to characterize tumor metabolic changes, MRS interpretation is mainly based on checking the elevation of certain metabolites (such as choline) or the absence or decrease of normal metabolites (e.g., N-acetyl aspartate-NAA) (Figueiras et al., *2016*).

The MR spectroscopy can also be used to depict the elevated lipid resonance levels in cervical carcinomas, persistent disease following concurrent chemo radiotherapy (CCRT) (Lin et al., 2016).