

Production of Bioactive Metabolites from Endophytic Microorganisms of Some Medicinal Plants

A Thesis

Submitted for Partial Fulfillment of the Requirements for the Degree of

Master of Science in Microbiology

By

Abeer Adel Abo Sheashea Shalaby

B.Sc. Microbiology and Chemistry (2007)

Botany Department, Faculty of Women for Art, Science & Education,

Ain Shams University

Supervisors

Prof. Dr. Fatma Aly Ahmed

Prof. Dr. Nadia Hafez Salah El-Din Ouda

Professor of Phytochemistry,

Medicinal and Aromatic Plants Department,

Desert Research Center

Professor of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University

Prof. Dr. Sherif Moussa Hussieny

Professor of Microbiology, Faculty of Women for Art, Science & Education,

Ain Shams University

2018

Approval Sheet

Title: Production of Bioactive Metabolites from Endophytic Microorganisms of Some Medicinal Plants

Name: Abeer Adel Abo Sheashea Shalaby

Supervisors	Approved
1- Prof. Dr. Fatma Aly Ahmed Professor of Phytochemistry, Medicinal and Aromatic Plants Department, Deser	rt Research Center.
2- Prof. Dr. Nadia Hafez Salah El-Din Ouda Professor of Medical Microbiology and Immunolo Faculty of Medicine, Cairo University.	ogy,
3- Prof. Dr. Sherif Moussa Hussieny Professor of Microbiology, Faculty of Women for Art, Science & Education, Ain Shams University	sity.

Acknowledgment

Praise and thanks to ALLAH SUBHANAHU WATAALA, the most graceful, and merciful for directing me the right way.

I wish to express my great and deepest gratitude to my supervisors:

Prof. Dr. Fatma Aly Ahmed, Professor of Phytochemistry, Medicinal and Aromatic Plants Department, Desert Research Center, for sharing in supervision, suggesting and planning the point of the research, advice, continuous help, special support during the progress and in presenting of this thesis.

Prof. Dr. Nadia Hafez Salah El-Din Ouda, Professor of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, for sharing in supervision, for the best acquisition, kind encouragement and precious advices during the progress and in presenting of this thesis.

Prof. Dr. Sherif Mossa Hussieny, Professor of Microbiology, Faculty of Women for Art, Science & Education, Ain Shams University, for sharing in supervision, suggesting and planning the point of the research, advice, continuous help, special support during the progress and in presenting of this thesis.

Also, I would like to express my deepest sense of gratitude to all members in Medicinal and Aromatic Plants Department, Desert Research Center, Cairo, Egypt, for their help, continuous encouragement and carrying out the experiments.

Finally, I cannot forget to express my deep gratitude and appreciation to my family for their encouragement and fruitful advices during the preparation of this thesis.

Signature

Abeer Adel Abo Sheashea

Declaration

This thesis has not been previously submitted for a degree at this or any other university.

Abeer Adel Abo Sheashea

Content

Subject	Page
List of tables	I
List of figures	V
List of photographs	VII
List of abbreviations	IX
Abstract	i
1. Introduction	1
Aim of Work	3
2. Review of Literature	4
2.1. Multidrug resistant bacteria	4
2.2. Medicinal plants	7
2.2.1. Essential oils	13
2.2.2. Endophytic microorganisms	14
2.2.2.1. Biopharmaceutical effects of endophytic microorganisms	16
2.2.2.2. Types of endophytic microorganisms	20
3. Materials and Methods	24
3.1. Source of multidrug resistant Gram negative bacteria	24
3.1.1. Medium for growth of clinical isolates	24
3.1.2. Identification of clinical isolates	24
3.1.3. Sensitivity test of commercially standard antibiotics	24
3.2. Medicinal plants	26
3.2.1. Collection of plant materials	26
3.3. Essential oils	26
3.3.1. Preparation of the essential oils of selected medicinal plants	26
3.3.2. Antibacterial activity of the essential oils against MDRGNB	27
3.3.3. Determination of minimum inhibitory concentration (MIC)	27
3.3.4. Identification of the essential oils components	28
3.4. Endophytic microorganisms	29
3.4.1. Media used for isolation and purification of endophytes	29
3.4.2. Technique for isolation and purification of endophytes	29

3.4.3. Fermentation and production of biometabolites from isolated endophytes	30
3.4.4. Antibacterial activity of biometabolites of isolated endophytes against MDRGNB	31
3.4.5. Selection and identification of the most potent endophyte	32
3.4.6. Optimization of the physical and nutritional factors to maximize the efficiency of antibacterial activity of biometabolites produced from the most potent endophytic isolate	32
3.4.6.1. Optimization of one-factor-at-a-time (OFAT) approach	32
3.4.6.2. Optimization of all factors by statistical analysis by Design-Expert® software	36
3.4.7. Scaling up under optimized conditions	49
3.4.8. Extraction of the antibacterial compound(s)	49
3.4.9. Thin layer chromatography (TLC)	50
4. Results and Discussion	51
4.1. Multidrug resistant Gram negative bacteria (MDRGNB)	51
4.1.1. Identification of clinical isolates	51
4.1.2. Sensitivity test of commercially standard antibiotics	51
4.2. Medicinal plants	56
4.2.1. Collection of plant materials	56
4.3. Essential oils	56
4.3.1. Antibacterial activity of the essential oils against MDRGNB	56
4.3.2. Determination of minimum inhibitory concentration (MIC)	66
4.3.3. Identification of the essential oils components	68
4.4. Endophytic microorganisms	89
4.4.1. Isolation of endophytes	89
4.4.2. Antibacterial activity of biometabolites of isolated endophytes against MDRGNB	92
4.4.3. Identification of the most potent endophytic fungal isolate	95
4.4.4. Optimization of the physical and nutritional factors	98
4.4.4.1. Optimization of <i>Alternaria tenuissima</i> by one-factor-at-atime (OFAT) approach	98
4.4.4.2. Optimization of <i>Alternaria tenuissima</i> of all factors by statistical analysis by Design-Expert® software	109

Content

4.4.5. Fermentation, extraction and antibacterial activity of the		
different crude extracts against MDRGNB	l	
4.4.6. Thin layer chromatography (TLC) of ethyl acetate crude extract related to <i>Alternaria tenuissima</i>	133	
Conclusion and Recommendation		
5. Summary	135	
6. References		
Arabic Summary	Í	

List of tables

Table No.	Title	Page
1	Commercially standard antibiotics.	25
2	Concentrations of eleven variables at two levels in PBD for efficiency of antibacterial activity of biometabolites produced by the most potent endophytic isolate against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	38
3	PBD of twelve runs for chosen eleven variables with actual values for efficiency of antibacterial activity of biometabolites produced by the most potent endophytic isolate against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	40
4	Ranges of the independent variables used in CCD of RSM for efficiency of antibacterial activity of biometabolites produced by the most potent endophytic isolate against <i>A. baumannii</i> .	43
5	CCD of RSM of thirty runs for four variables with actual values for efficiency of antibacterial activity of biometabolites produced by the most potent endophytic isolate against <i>A. baumannii</i> .	45
6	Ranges of the independent variables used in CCD of RSM for efficiency of antibacterial activity of biometabolites produced by the most potent endophytic isolate against <i>K. pneumoniae</i> .	47
7	CCD of RSM of thirty-two runs for five variables with actual values for efficiency of antibacterial activity of biometabolites produced by the most potent endophytic isolate against <i>K. pneumoniae</i> .	48
8	Sensitivity test of commercially standard antibiotic discs against tested clinical isolates in the form of the diameter of inhibition zones (mm).	53
9	Habitats of collected medicinal plants.	56
10	Antibacterial activity of different essential oils against MDRGNB in the form of diameter of inhibition zones (mm) by disc diffusion method.	57
11	MIC (ml/ml) values of the effective essential oils against MDRGNB using critical dilution assay and disc diffusion method.	67
12	Chemical composition of <i>Origanum majorana</i> L. (SEKEM) essential oil.	70

13	Chemical composition of <i>Origanum majorana</i> L. (North Sinai) essential oil.	72
14	Chemical composition of <i>Origanum syricum</i> L. essential oil.	74
15	Chemical composition of <i>Thymus capitatus</i> L. essential oil.	76
16	Chemical composition of <i>Thymus vulgaris</i> L. essential oil.	78
17	Chemical composition of <i>Salvia fruticosa</i> Mill. essential oil.	80
18	Chemical composition of <i>Mentha viridis</i> L. essential oil.	82
19	Chemical composition of <i>Lavandula officinalis</i> L. essential oil.	84
20	Endophytes isolated from different plant parts of eight medicinal plants.	90
21	Efficiency of antibacterial activity of biometabolites (%) related to the fermentation filtrates of the fungal isolates against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	92
22	Efficiency of antibacterial activity of biometabolites (%) related to the fermentation filtrates of the bacterial isolates against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	94
23	Efficiency of antibacterial activity of biometabolites (%) related to the fermentation filtrates of the actinomycetes isolates against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	94
24	Effect of incubation temperature on biomass and efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	99
25	Effect of incubation period on biomass and efficiency of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	100
26	Effect of initial pH on biomass and efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	101
27	Effect of speed of agitation on biomass and efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	103

28	Effect of different carbon sources on biomass and efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	104
29	Effect of different concentrations of glucose on biomass and efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	105
30	Effect of different nitrogen sources on biomass and efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	106
31	Effect of different KNO ₃ concentrations on biomass and efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	108
32	PBD of twelve runs for chosen eleven variables with predicated and actual values for efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> .	111
33	Estimated effects, linear regression coefficients and corresponding F-values and P-values for efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> by PBD.	111
34	PBD of twelve runs for chosen eleven variables with predicated and actual values for efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>K. pneumoniae</i> .	115
35	Estimated effects, linear regression coefficients and corresponding F-values and P-values for efficiency of antibacterial activity of biometabolites by <i>Alternaria tenuissima</i> against <i>K. pneumoniae</i> by PBD.	115
36	CCD of RSM of thirty runs for four variables with predicted and actual values for efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> .	119
37	Quadratic regression coefficients and corresponding F-values and P-values for efficiency of antibacterial activity of biometabolites related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> by CCD of RSM.	120

38	CCD of RSM of thirty-two runs for five variables with predicted and actual values for efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>K. pneumoniae</i> .	125
39	Quadratic regression coefficients and corresponding F-values and P-values for efficiency of antibacterial activity of biometabolites related to <i>Alternaria tenuissima</i> against <i>K. pneumoniae</i> by CCD of RSM.	126
40	Antibacterial activity of different crude extracts of organic solvents against <i>A. baumannii</i> and <i>K. pneumoniae</i> in the form of diameter of inhibition zones (mm) by agar well diffusion method.	130
41	Clarifying R_f value and spot color of bands present in ethyl acetate crude extract.	133

List of figures

Figure No.	Title	Page
1	GC chromatogram of <i>Origanum majorana</i> L. (SEKEM) essential oil.	69
2	GC chromatogram of <i>Origanum majorana</i> L. (North Sinai) essential oil.	71
3	GC chromatogram of <i>Origanum syricum</i> L. essential oil.	73
4	GC chromatogram of <i>Thymus capitatus</i> L. essential oil.	75
5	GC chromatogram of <i>Thymus vulgaris</i> L.essential oil.	77
6	GC chromatogram of Salvia fruticosa Mill. essential oil.	79
7	GC chromatogram of <i>Mentha viridis</i> L. essential oil.	81
8	GC chromatogram of Lavandula officinalis L. essential oil.	83
9	Distribution and diversity of the total isolated endophytes.	91
10	Effect of incubation temperature on biomass and efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	99
11	Effect of incubation period on biomass and efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	100
12	Effect of initial pH on biomass and efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	102
13	Effect of speed of agitation on biomass and efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	103
14	Effect of different carbon sources on biomass and efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	104
15	Effect of different concentrations of glucose on biomass and efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	105
16	Effect of different nitrogen sources on biomass and efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	107

17	Effect of different KNO ₃ concentrations on biomass and efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> and <i>K. pneumoniae</i> .	108
18	Predicted response versus actual value for efficiency of antibacterial activity of biometabolites related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> .	112
19	Pareto chart showing the effect of the medium components on the efficiency of antibacterial activity of biometabolites related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> .	112
20	Predicted response versus actual value for efficiency of antibacterial activity of biometabolites related to <i>Alternaria tenuissima</i> against <i>K. pneumoniae</i> .	116
21	Pareto chart showing the effect of the medium components on the efficiency of antibacterial activity of biometabolites related to <i>Alternaria tenuissima</i> against <i>K. pneumoniae</i> .	116
22	The contour plots and 3D surface for the efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>A. baumannii</i> at varying concentrations for the interactions of three factors: (a) glucose and KNO ₃ (b) glucose and FeSO _{4.7} H ₂ O (c) FeSO _{4.7} H ₂ O and KNO ₃ . The other variable, except for two in each figure, was maintained at zero level.	122
23	The contour plots and 3D surface for the efficiency of antibacterial activity of biometabolites (%) related to <i>Alternaria tenuissima</i> against <i>K. pneumoniae</i> at varying concentrations for the interactions of three factors: (a) glucose and KNO ₃ (b) glucose and FeSO _{4.} 7H ₂ O (c) KNO ₃ and ZnSO ₄ . The other variable, except for two in each figure, was maintained at zero level.	128

List of photographs

Photo. No.	Title	Page
1	Identification of <i>Acinetobacter baumannii</i> and <i>Klebsiella pneumoniae</i> by Oxoid TM Microbact TM Identification GNB 12A Kit and Oxoid TM Microbact TM software program.	52
2	Culture plates of sensitivity test of commercially standard antibiotic discs in the form of diameter of inhibition zones (mm) against three isolates of <i>A. baumannii</i> .	54
3	Culture plates of sensitivity test of commercially standard antibiotic discs in the form of diameter of inhibition zones (mm) against three isolates of <i>K. pneumoniae</i> .	55
4	Culture plates of antibacterial activity of <i>Origanum majorana</i> L. (SEKEM) essential oil in the form of diameter of inhibition zones (mm) by disc diffusion method against three isolates of <i>A. baumannii</i> and three isolates of <i>K. pneumoniae</i> .	58
5	Culture plates of antibacterial activity of <i>Origanum majorana</i> L. (North Sinai) essential oil in the form of diameter of inhibition zones (mm) by disc diffusion method against three isolates of <i>A. baumannii</i> and three isolates of <i>K. pneumoniae</i> .	59
6	Culture plates of antibacterial activity of <i>Origanum syricum</i> L. essential oil in the form of diameter of inhibition zones (mm) by disc diffusion method against three isolates of <i>A. baumannii</i> and three isolates of <i>K. pneumoniae</i> .	60
7	Culture plates of antibacterial activity of <i>Thymus capitatus</i> L. essential oil in the form of diameter of inhibition zones (mm) by disc diffusion method against three isolates of <i>A. baumannii</i> and three isolates of <i>K. pneumoniae</i> .	61
8	Culture plates of antibacterial activity of <i>Thymus vulgaris</i> L. essential oil in the form of diameter of inhibition zones (mm) by disc diffusion method against three isolates of <i>A. baumannii</i> and three isolates of <i>K. pneumoniae</i> .	62
9	Culture plates of antibacterial activity of <i>Salvia fruticosa</i> Mill. essential oil in the form of diameter of inhibition zones (mm) by disc diffusion method against three isolates of <i>A. baumannii</i> and three isolates of <i>K. pneumoniae</i> .	63
10	Culture plates of antibacterial activity of <i>Mentha viridis</i> L. essential oil in the form of diameter of inhibition zones (mm) by disc diffusion method against three isolates of <i>A. baumannii</i> and three isolates of <i>K. pneumoniae</i> .	64

List of photographs

11	Culture plates of antibacterial activity of <i>Lavandula officinalis</i> L. essential oil in the form of diameter of inhibition zones (mm) by disc diffusion method against three isolates of <i>A. baumannii</i> and three isolates of <i>K. pneumoniae</i> .	65
12	Culture plate of <i>Alternaria tenuissima</i> on potato dextrose agar medium.	97
13	Conidia of <i>Alternaria tenuissima</i> under the microscope (x100).	97
14	Culture plates of antibacterial activity of different crude extracts of different organic solvents in the form of diameter of inhibition zones (mm) by agar well diffusion method against <i>A. baumannii</i> and of <i>K. pneumoniae</i> .	131