Ain Shams University Faculty of Science Geology Department

Geology, Petrology and Radioactive Potentiality of Um Bogma Formation in the Area West of Wadi El-Nasab, Southwestern Sinai, Egypt

By Yasmeen Gamal Ahmed Abdel-Maksoud

B. Sc. in Geology (2013), Faculty of Science, Ain Shams University

A thesis submitted to

The Department of Geology, Faculty of Science, Ain Shams University In partial fulfillment of the requirements of the degree of Master of Science (Geology)

Supervised by

Prof. Dr. Mohamed M. Abu-zeid

Professor of Mineralogy and Sedimentary Petrology, Faculty of Science, Ain Shams University

Prof. Dr. Ibrahim E. El Aassy

Professor of Uranium Geology, Nuclear Materials Authority

Prof. Dr. Ashraf R. Baghdady

Professor of Sedimentary Petrology, Faculty of Science, Ain Shams University

Cairo (2018)

NOTE

The present thesis is submitted to the Geology Department, Faculty of Science, Ain Shams University in partial fulfillment of the requirements of the degree of Master in Science in Geology.

Beside the research work materialized in this thesis, the candidate has successfully passed the final examinations of postgraduate courses covering the following topics:

- 1. Field Geology.
- 2. Geostatistics.
- 3. Sedimentary Petrology.
- 4. Sedimentation.
- 5. Advanced Mineralogy.
- 6. Geochemistry.
- 7. Igneous Petrology.
- 8. Metamorphic Petrology.
- 9. Advanced Crystallography.
- 10. Ore Petrology.
- 11. Lab Techniques.
- 12. English Language.

Head	l of	Geology	Depart	tment	t
------	------	---------	--------	-------	---

F).	r	C)	f	•	I))	r	•	1	Δ	١	1	i]	F	1	a	1	•	a	٤	9	,	-	S	5	a	!	y	(9	(1
																							•													

Dedication

To My Parents My Husband Kareem

XMy Lovely Daughter Farida

ACKNOWLEDGEMENTS

First of all, praise is due to almighty ALLAH for his compassion and mercifulness that allowed me to finish this work.

The author would like to express her deep appreciation to the Geology Department, Faculty of Science, Ain Shams University and the Nuclear Materials Authority (NMA) for providing facilities during the progress of this research work. Also, thanks are due to the Sinai Manganese Company for the accomodation and generous hospitality during the field work.

I am greatly indebted and deeply greatful to the supervisors of this thesis:

Prof. Mohamed M. Abu-zeid (Geology Department, Faculty of Science, Ain Shams University), **Prof. Ibrahim E. El Aassy** (Nuclear Materials Authority, NMA) and **Prof. Ashraf R. Baghdady** (Geology Department, Faculty of Science, Ain Shams University). Their immense knowledge, close supervision, sincere guidance, fruitful discussions and continuous support were essential to accomplish this research work.

My gratitude goes also to the respected staff at the Nuclear Materials Authority Prof. Gehan A. Aly, Ass. Prof. Eman M. Ibrahim, Dr. Marwa M. Abdel Azeem and Amany R. A. Saied. Special gratitude is expressed to Dr. Ahmed M. A. Al-Anweh, Dr. Ayman K, El-Saly, Dr. Samia El Wakil and Ass. Lec. Mohamed M. Abdel Fattah for their sincere help.

I am deeply grateful to Allah who made my husband kareem M. Salama and my lovely daughter Farida the main part of my life. Their understanding, sincere help and continuous encouragement were essential for the accomplishment of this thesis which represents one of my life goals. I would like to express my hearty love and deepest gratitude to my father and my mother for their unlimited patience and sympathetic feelings and care during the progress of this research work. I would like to express my deep appreciation to all my friends who were always supportive.

Finally, I would like to say

"If it were not for you, I would not have been here"

ABSTRACT

The exposed rocks in Talet Seleim area west of Wadi El-Nasab are represented by the Precambrian Basment Complex overlain by a succession of the Lower Carboniferouos Um Bogma Formation and the unconformably overlying Abu Thora Formation. Extensive field and laboratory studies on the Um Bogma Formation indicated that it consists of a lower siltstone-dolostone member, a middle siltstone-mudstone-dolostone member and an upper dolostone member. These rock units have mainly unconformable relationships and show marked lateral variations in thickness and minor changes in lithology. The rocks display several primary sedimentary structures the most common of which are bedding, lamination and biogenic features. Also, the succession is variably affected by faulting, jointing and small-scale folding and contains gypsum veins and clastic dykes.

The argillaceous rocks in Um Bogma Formation are slightly to highly calcareous and ferruginous. They are texturally classified as siltstone, sandy siltstone, mudstone and sandy mudstone. Their clay fractions consist of kaolinite and minor proportions of illite and montmorillonite-illite. The nonclay mineral assemblage is made up of non-radioactive, radioactive and REEs- and heavy metals-bearing minerals. It contains thorite, uranothorite, fergusonite, allanite, cerite, ferricorondite, chalcophanite, cassiterite, brass (Cu, Ni, Zn) and REEs concentrates. These minerals exist in a variety of forms, habits and modes of occurrence indicative of primary and secondary as well as allogenic and authigenic origin. On the other hand, the carbonate rocks in the lower two members of Um Bogma Formation and those constituting its upper member are classified as dolosparite (dolomitized crystalline carbonate) and dolomitized intra-biosparite (dolomitized wackestone). These carbonates

consist of dolomite and lesser proportions of calcite. Dolomite crystals are micro-to macrocrystalline and of two types: idiotopic and xenotopic. The noncarbonate fractions consist of a large number of minerals including thorite, uranophane, zircon, Ni concentrates, gold and silver.

The argillaceous rocks, especially those of the middle member, are markedly enriched in Al₂O₃, Fe₂O₃ and MnO in addition to a large number of the trace and rare earth elements (mainly LREEs) and heavy metals. The majority of these elements are concentrated in the heavy mineral fractions. Their moderate to strong positive correlations indicate genetic relationships. It is most likely that they were concentrated during weathering and diagenesis. The rocks showed moderate negative Ce and Eu anomalies when normalized to chondorites. This indicates the prevalence of reducing conditions during their deposition and / or diagenesis. Applying several discrimination diagrams revealed that the detrital components of the rocks were derived from continental source rocks having intermediate chemical composition or from mixed felsic and basic rocks. Evidently, these rocks were subjected to moderate to strong weathering under tropical conditions.

The argillaceous rocks in Um Bogma Formation, especially those of its middle member, have much higher radioactivity than that of carbonates. Also, the rocks in the eastern part of Talet Seleim area are more radioactive than those in its western part. Evidently, the majority of Um Bogma rocks were subjected to continuous and contrasting uranium mobilization processes that resulted in its addition in rocks of the middle member and a state of equilibrium for each of the lower and upper members. Assessing the time of the last uranium migration in the rocks revealed that it ranged between 20.32 and 322.5 Ka for rocks of the middle member and is 97.59 Ka for those of the upper member.

Diagenetic compaction, cementation, alteration, replacement and dissolution greatly modified the original textural and, especially, compositional characteristics of Um Bogma rocks. The first two processes were more profound in the argillaceous rocks whereas the other three affected mainly the carbonates. Dolomitization of the original limestones occurred during both the mesogenetic phase (by the action connate waters) and epigenetic phase (in the zone of mixing of marine waters and underground freshwaters).

CONTENTS	Page No.
List of Figures	Iv
List of Tables	X
CHAPTER ONE	
Introduction	
1.1. Sinai	
1.1.1. Geologic setting.	
1.1.2. Lithostratigraphy	
1.2.1. Geologic setting.	
1.2.2. Paleozoic lithostratigraphy	5
1.2.3. The mineralizations.	11
1.2.3.1.Radioactive mineralizations	
1.2.3.2.Non-radioactive mineralizations	
1.3. Objectives of the study	
CHAPTER TWO	
Materials and Methods of Study	
•	20
2.1. Materials and Field Work	
2.2. Laboratory Methods	
2.2.2. Grain-size analyses.	
2.2.3. Microscopic examination	
2.2.4. Heavy mineral examination	
2.2.5. X-Ray diffraction analysis	
2.2.6. Chemical analyses	
2.2.7. The loss on ignition.	
2.2.8. Radiometric measurements	
CHAPTER THREE	
Geology and Lithostratigraphy	
	24
3.1. Geology	
3.1.2. Structures.	
(a) Primary structures.	
(b) Secondary structures	
(b) secondary structures	20

3.2. Lithostratigraphy	29
3.2.1. Description of the stratigraphic sections	29
3.2.2. Lithostratigraphic correlation.	42
CHAPTER FOUR	
Petrography and Mineralogy	
4.1. The Lower Member.	44
4.1.1. Petrography	44
4.1.1.1. Carbonate content and grain- size distribution	44
4.1.1.2. Microscopic petrography	46
4.1.2. Mineralogy.	49
4.1.2.1. Bulk and clay mineral composition	49
4.1.2.2. Heavy mineral composition	52
(i) Radioactive minerals	52
(ii) REEs- and base metals-bearing minerals	52
(iii) Non- radioactive minerals	52
4.2. The Middle Member	54
4.2.1. Petrography	54
4.2.1.1. Carbonate content and grain- size distribution	54
4.2.1.2. Microscopic petrography	54
4.2.2. Mineralogy	60
4.2.2.1. Bulk and clay mineral composition	60
4.2.2.2. Heavy mineral composition	66
(i) Radioactive minerals.	66
(ii) The REEs- and base metals-bearing minerals	67
(iii) Non- radioactive minerals	70
4.3. The Upper Member.	73
4.3.1. Petrography	73
4.3.1.1. Carbonate content.	73
4.3.1.2. Microscope petrography	73
4.3.2. Mineralogy.	76
4.3.2.1. Bulk mineral composition.	76
4.3.2.2. Heavy mineral composition.	76
(i) Radioactive minerals	76
(ii) The REEs- and base metals-bearing minerals	77
(iii) Non- radioactive minerals	79

CHAPTER FIVE

Geocnemistry	
5.1. The Major Elements	82
Geochemical classification of the rocks	84
5.2. The Trace Elements	87
Geochemistry of the trace elements	89
5.3. The Rare Earth Elements.	92
Geochemistry of the rare earth elements	94
CHAPTER SIX	
Radioactivity	
6.1. Distribution of Radioelements	97
6.2. Uranium migration	99
6.2.1. Criteria of migration.	99
6.2.2. Type of uranium migration	102
6.2.3. Time of uranium migration	103
CHAPTER SEVEN	
Summary and Conclusions	107
References	113
Appendix	125
Arabic Summary	1