

Comparative Characterization Study of Nuclear Track Detector (CR-39) and the Used Filmstrip for Uranium Ore Exploration

A Thesis

"Submitted for the degree of Master Science as a partial Fulfillment for requirement of the master of Science"

By Rana Sami Koth Aita

Supervisors

Prof. Dr. Mona Mohamed Abd Latif Mohsen

Prof. of Applied Nuclear Physics Faculty of Science - Ain Shams University.

Prof. Dr. Emad Hassan Alv

Prof. of Applied Nuclear Physics Faculty of Science - Ain Shams University.

Prof. Dr. Sayed Fahmy Hassan

Prof. of Radiation Physics Nuclear Materials Authority.

(2018)

APPROVAL SHEET

Title of the M.Sc. Thesis

Comparative Characterization Study of Nuclear Track Detector (CR-39) and the Used Filmstrip for Uranium Ore Exploration

Name of the Candidate

Rana Sami Kotb Aita

Submitted to

Department of Physics, Faculty of Science, Ain Shams University

This Thesis has been approved for submission by

**	
<u>Supervisors</u>	<u>Signature</u>
Prof. Dr. Mona Mohamed Abd Latif Mohsen Prof. of Applied Nuclear Physics Faculty of Science - Ain Shams University	
Prof. Dr. Emad Hassan Aly Prof. of Applied Nuclear Physics Faculty of Science - Ain Shams University	
Prof. Dr. Sayed Fahmy Hassan Prof. of Radiation Physics Nuclear Materials Authority	
Examiners Committee	<u>Signature</u>
Prof. Dr. Ibrahim Ismail Ali Bashter Prof. of Radiation Physics Faculty of Science - Zagazig University	
Prof. Dr. Esam El-Sayed Abdel- Hady Prof. of Applied Nuclear Physics Faculty of Science - Minia University	
Prof. Dr. Mona Mohamed Abd Latif Mohsen Prof. of Applied Nuclear Physics Faculty of Science - Ain Shams University	
Prof. Dr. Emad Hassan Aly Prof. of Applied Nuclear Physics Faculty of Science - Ain Shams University	

بسم الله الرحمن الرحيم

(سورة العلق: آية رقم ٥)

ACKNOWLEDGMENT

Praise is to Allah, who guided me to do this work.

I wish to express my deepest thanks and gratitude to *Prof. Dr/ Mona Mohamed Abd Latif*, Professor of Applied Nuclear Physics, Faculty of Science, Ain Shams University, for her encouragement, supervision, valuable criticism and fruitful advice.

My deepest thanks to *Prof. Dr/ Emad Hassan Aly*, Professor of Applied Nuclear Physics, Faculty of Science, Ain Shams University, for his supervision and valuable encouragement during the course of this work.

My gratitude and deep thanks to *Prof. Dr/ Sayed Fahmy Hassan*, Professor of Radiation Physics, Nuclear Materials Authority, for his effort, and fruitful help, continuous supervision, guidance and valuable encouragement, and who gave me some of his valuable time and advice during my work in the laboratory as well as to provide the tools for the study of films and a microscope.

My utmost gratitude and deep thanks to *Prof. Dr/ Ibrahim El-Kattany El-Aassy*, Professor of Applied Geology, Nuclear Materials Authority, for suggesting the problem, fruitful discussions, stimulating suggestions and for his advice throughout this work and strong interest in my work.

I wish to express my deep thanks and gratitude to my Father, *Prof. Dr/ Sami Koth Aita*, Professor of Sedimentology, Nuclear Materials

Authority, for his encouragement and helping me in the field and laboratory works.

My deepest thanks and gratitude to *Dr/ Eman Mohamed Ibrahim*, Assistant Professor of Radiation Physics, Nuclear Materials Authority, for her everlasting encouragement, continuous supervision, fruitful advice.

My utmost gratitude and deep thanks to *Prof. Dr/ H. M. EL-Samman*, Professor of Nuclear Physics, Faculty of Science, Menofia University, for fruitful help and strong interest in my work, as well as to provide the tools for the study of films.

I would also like to thank all members of Physics Department, Faculty of Science, Faculty of Education, Ain Shams University and the Radiation, Nuclear and Chemistry Labs in Nuclear Materials Authority, as well as all my colleges for providing guidance, tools and support in completing this research.

My Mother, my husband Eng. Ahmed El-Garhy, my kids (Zeyad & Nada) and all my family, their wishes and blessings have always created confidence in me to accomplish this work, sincere help and continuous encouragement.

Rana Sami Koth Aita

CONTENTS

LIST OF FIGURES
LIST OF TABLES
ABSTRACT
CHAPTER ONE
LITERATURE REVIEW
1.1 Introduction
1.2 Literature Review
1.2.1 Radon Concentration - Track Density Calibration Factor
1.2.2 Etching Conditions
1.2.3 Radon Gas Concentration, Exhalation and Emanation
1.2.4 Activity Measurements of U, Th, K and Ra and Hazard Indices
1.2.5 Solid State Nuclear Track Detectors
1.2.6 Positron Annihilation Lifetime Spectroscopy
1.3 Main Characteristics of the Studied Area
1.3.1 Geologic Setting
1.3.2 Climate
1.4 Aim of the Work
CHAPTER TWO
THEORITICAL BACKGROUND
2.1 Natural Decay Series
2.2 Radioactive Equilibrium
2.2.1 Secular Equilibrium
2.2.2 Transient Equilibrium
2.2.3 No Equilibrium

CONTENTS

2.3 Uranium Series Disequilibria	4
2.4 Radionuclides in Nature	4
2.4.1 Uranium	4
2.4.2 Thorium	4
2.4.3 Radium	4
2.4.4 Radon	4
2.4.4.1 Physical and Chemical Properties of Radon	5
2.4.4.2 Radon Sources in Nature	5
2.4.4.3 Radon Movement	5
2.4.4.4 Radon Emanation	5
2.4.4.5 Factors Affecting Radon Emanation	5
2.4.4.6 Radon Migration	5
2.4.4.7 Radon Exhalation	6
2.4.4.8 Radon and Radium Health Hazards	6
2.5 Radon Measurement Techniques	6
2.5.1 Active Techniques	6
2.5.1.1 Scintillation Cells.	(
2.5.1.2 Ionization Chamber	(
2.5.1.3 Electrostatic Collection of Decay Products	(
2.5.2 Passive Techniques	(
2.5.2.1 Charcoal Detectors	(
2.5.2.2 Electret Ion Chamber	(
2.5.2.3 Etched Track Detectors	(
2.6 Solid State Nuclear Track Detectors	(
2.6.1 Advantages of SSNTDs	(
2.6.2 Applications of SSNTDs	6
2.6.2.1 Uranium Exploration	6
2.6.2.2 Quantitative Determination of Uranium in Soil	
and Leaf Samples	(
2.6.2.3 Very Low Level Alpha Estimation in Waste	
Streams	6

2.6.2.4 Measurements of Alpha to Spontaneous Fission	
Ratios of Heavy Actinides	•
2.6.3 Types of SSNTDs	
2.6.4 Special Features of SSNTDs	••
2.6.5 Energy Loss Mechanisms	
2.6.5.1 Total Energy Loss (dE/dx)	. .
2.6.5.2 Primary Ionization Loss (J)	
2.6.5.3 Restricted Energy Loss (REL)	
2.6.6 Principles of Track Formation on the Solid Stan Nuclear Track Detector.	
2.6.7 CR-39 SSNTD	
2.7 Positron Annihilation Lifetime Spectroscopy in Materia	ls
2.8 The Free Volume and Hole Theory in Polymers	
CHAPTER THREE	
EXPERIEMENTAL TECHNIQUES	
3.1 Laboratory Experiments for Cinema Film Preparation	
3.1.1 Clearing Process	
3.1.2 Structure Determination	
3.1.3 Etching Conditions Optimization for Cinema Film	
3.1.3.1 Irradiation Process	
_	
3.1.3.1 Irradiation Process	
3.1.3.1 Irradiation Process	
3.1.3.1 Irradiation Process 3.1.3.2 Track Visualization 3.1.4 Calibration Process	
3.1.3.1 Irradiation Process 3.1.3.2 Track Visualization 3.1.4 Calibration Process 3.1.4.1 Radon Calibration Chamber	
3.1.3.1 Irradiation Process 3.1.3.2 Track Visualization 3.1.4 Calibration Process 3.1.4.1 Radon Calibration Chamber 3.1.4.2 Calibration Methodology	
3.1.3.1 Irradiation Process 3.1.3.2 Track Visualization. 3.1.4 Calibration Process. 3.1.4.1 Radon Calibration Chamber. 3.1.4.2 Calibration Methodology. 3.1.4.3 Etching Process of Cinema Film and CR-39	 ne
3.1.3.1 Irradiation Process 3.1.3.2 Track Visualization. 3.1.4 Calibration Process. 3.1.4.1 Radon Calibration Chamber. 3.1.4.2 Calibration Methodology. 3.1.4.3 Etching Process of Cinema Film and CR-39 3.1.4.4 Tracks Counting Methods and Statistics 3.2 Comparison between CR-39 and Cinema Film in Son Laboratory Experiments	 ne
3.1.3.1 Irradiation Process 3.1.3.2 Track Visualization. 3.1.4 Calibration Process. 3.1.4.1 Radon Calibration Chamber. 3.1.4.2 Calibration Methodology. 3.1.4.3 Etching Process of Cinema Film and CR-39 3.1.4.4 Tracks Counting Methods and Statistics 3.2 Comparison between CR-39 and Cinema Film in Son	 ne

CONTENTS

3.2.2.1 Rock Samples Preparation	98
3.2.2.2 HPGe Detector	98
3.2.2.3 Calibration of Gamma Spectrometer	100
3.2.2.4 Activity Measurements	104
3.2.3 Closed - Can Technique Set Up	105
3.2.4 Radon Concentration Measurement	107
3.2.5 Surface Exhalation Rate Measurement	107
3.2.6 Effective Radium Content	108
3.2.7 Emanation Coefficient	109
3.2.8 Positron Annihilation Lifetime (PAL) Spectroscopy	109
3.2.8.1 Positron Source	109
3.2.8.2 PAL Instrumental Set Up	112
3.2.8.3 Data Analysis of PAL Spectra	117
3.3 Field Work	121
3.3.1 Cup Preparation (The Open-Cup Mode Detectors)	121
3.3.2 Cups Planting and Rock Samples Collection	124
3.3.3 Hazard Indices	125
3.3.3.1 Absorbed Dose Rate	125
3.3.3.2 Annual Effective Gamma Dose	125
3.3.3.3 Radium Equivalent Activity	126
3.3.3.4 External Hazard Index	126
3.3.3.5 Internal Radiation Hazard Indexes	126
3.3.3.6 Gamma Activity Concentration Index	127
3.3.3.7 The Annual Effective Alpha Dose	127
3.3.3.8 Alpha Index	128
3.3.4 Cups collection and Radioactivity Study for Area	
under Investigation	128
CHAPTER FOUR	129
RESULTS AND DISCUSSION	
4.1 Comparison between CR-39 and Cinema Film	129

4.1.1 Laboratory Experiments	12
4.1.1.1 Track Densities	13
4.1.1.2 Radon Gas Concentrations	13
4.1.1.3 Radon Exhalation Rates	13
4.1.1.4 Emanation Coefficient	13
4.1.2 Field Measurements	13
4.2 Radionuclides Distribution	13
4.2.1 Activity Ratios	1
4.2.2 Thiel Diagram	1
4.2.3 Radionuclides Concentration	1
4.3 Comparison between Gamma and Alpha Measurements	1
4.3.1Radon Measurements and Radionuclides	
Concentration	1
4.3.2 Contour Maps for Radionuclides Distribution	1
4.4 Hazard Indices of the Study Area	1
4.5 Positron Annihilation Lifetime Spectroscopy	1
4.6 Infrared Spectroscopy	1
SUMMARY AND CONCLUSION	1
REFERENCES	1
ARABIC SUMMARY	

LIST OF FIGURES

(1-1)	Landsat image showing the location of Um Bogma region including Talat Seliem locality	31
(1-2)	Geologic map of Talat Seliem locality	32
(2-1)	Natural decay series: Uranium-238	36
(2-2)	Natural decay series: Thorium-232	37
(2-3)	Natural decay series: Uranium-235	38
(2-4)	Secular equilibrium state	40
(2-5)	Relationship between half-lives in transient equilibrium	40
(2-6)	Schematic of activity in non-equilibrium	41
(2-7)	(a) Schematic diagram of recoil ejection of ²³⁴ Th from a spherical grain as a result of the alpha decay of ²³⁴ U, followed by beta decay of ²³⁴ Th to ²³⁴ U (b) Radioactive decay of ²³⁸ U and ²³⁴ U	44
(2-8)	Natural radiation exposure to human	51
(2-9)	Radon can move through cracks in rocks and through pore spaces in soils	54
(2-10)	Some radon atoms remain trapped in the soil and decay to reach stable lead; other atoms escape quickly into the air	55
(2-11)	Scheme of radon emanation phenomenon. Emanation: (A), (B), (E) and (F). Not emanation: (C), (D) and (G). If radon cannot diffuse out from inner pore into outer, radon in point (F) should not be regarded as being emanated. Arrows following terminal points of recoil represent diffusion process, which are not to scale	57
(2-12)	Radon emanation, migration and exhalation	61
(2-13)	A latent track is formed in: (a) inorganic solid by the	0.1
(= ==)	ionization and production of dense positive ions along	

	the ion path (b) the breakage of polymeric chains by the passage of charge particles.	70
(2-14)	Schematic representation of the basic relations of the irradiation, track etching and track visualization phase	75
(2-15)	Show an etch pit profile with prolonged chemical etching.	76
(2-16)	Positron annihilation to two gamma quanta	78
(2-17)	Ps localization diagram in the free volume holes of a polymer before its annihilation	81
(2-18)	Tao-Eldrup model	82
(3-1)	Cinema film structure	85
(3-2)	The cinema film before and after cleaning	85
(3-3)	Schematic of an FTIR system	86
(3-4)	IR spectrum of cinema film	87
(3-5)	Chemical structure of: a) cinema film and b) CR-39	88
(3-6)	Schematic diagram of experimental arrangement used to irradiate the cinema film	89
(3-7)	Optical images of alpha particle's tracks on Cinema film at different etching times: a) 15min, b) 35min, c) 45min.	89
(3-8)	Radon calibration chamber.	91
(3-9)	Variation of measured track density as a function of radon concentration	93
(3-10)	Block diagram of the gamma spectrometer	99
(3-11)	Gamma-ray spectra for IAEA reference materials: RGU-1, RGTh-1 and RGK-1, respectively	102
(3-12)	The absolute efficiency for volume 200ml for the gamma-ray energies emitted by reference materials: RGU-1, RGTh-1 and RGK-1.	103

(3-13)	Schematic drawing of the closed-can technique with the selected samples	106
(3-14)	The nuclear decay scheme of ²² Na	110
(3-15)	Positron energy distribution.	111
(3-16)	The source-sample sandwich	111
(3-17)	Schematic diagram of positron annihilation lifetime spectrometer.	112
(3-18)	Cinema film and CR-39 samples preparation for PAL analysis	113
(3-19)	PAL spectra.	118
(3-20)	Typical (a) raw and (b) resolved PALS spectrum of polymer	121
(3-21)	Open-cup detectors arrangement	122
(3-22)	Landsat image of Talet Selim Locality showing location of samples and film cups	123
(3-23)	The Cup detector technique used in the underground monitoring stations with the two SSNTDs	124
(4-1)	The measured track densities for different samples by the two SSNTDs (CR-39 and Cinema film)	131
(4-2)	The calculated radon gas concentrations for different samples by the two detectors	132
(4-3)	Variation of surface exhalation rates for different samples by the two detectors	133
(4-4)	Variation of the ²³⁴ U / ²³⁸ U activity ratio for different types of the studied samples. The equilibrium state is shown with the solid line while the dashed lines represent the equilibrium range.	149
(4-5)	Variation of the ²³⁰ Th / ²³⁸ U activity ratio for different types of the studied samples. The equilibrium state is shown with the solid line while the dashed lines represent the equilibrium range.	150

(4-6)	Variation of the ²³⁰ Th / ²³⁴ U activity ratio for different	
	types of the studied samples. The equilibrium state is	
	shown with the solid line while the dashed lines	
	represent the equilibrium range 1	51
(4-7)	Variation of the ²²⁶ Ra / ²³⁸ U activity ratio for different	
	types of the studied samples. The equilibrium state is	
	shown with the solid line while the dashed lines	
		52
(4-8)	Variation of the ²²⁶ Ra / ²³⁰ Th activity ratio for different	
	types of the studied samples. The equilibrium state is	
	shown with the solid line while the dashed lines	5 2
(4.0)		53
(4-9)	Variation of the ²³⁸ U / ²³⁵ U activity ratio for different	
	types of the studied samples. The dashed line represents the certified value of $(^{238}U/^{235}U)$ activity ratio (21.7)	54
(4.10)	Variation of the ²³⁴ U / ²³⁵ U activity ratio for different	.3 4
(4-10)	types of the studied samples. The dashed line represents	
	224 225	55
(4-11)	Schematic diagram showing the evolution of ²³⁴ U/ ²³⁸ U	
(4-11)	220 229	60
(4-12)	Contributions of the different processes in Thiel	
()		61
(4-13)	Variation of Th/U ratio for the different types of	
	samples in the studied area. 1	64
(4-14)	Radon concentration versus radium activity in; (a) 11	
	rock samples measured by SSNTDs in lab, and (b) all	
	samples measured by SSNTDs in the field 1	65
(4-15)	Radon exhalation rate versus radium activity in the	
	eleven rock samples. 1	66
(4-16)	Radon concentration versus uranium activity in; (a) 11	
	rock samples measured by SSNTDs in lab, and (b) all	
	samples measured by SSNTDs in the field 1	67

(4-17)	Radon exhalation rate and radium content versus uranium activity in the eleven rock samples
(4-18)	3-D distribution maps of radionuclides concentration in the studied area.
(4-19)	Contribution of the different radionuclides in absorbed gamma dose rate in (a) Sandstone, (b) Siltstone, (c) Mudstone, (d) Marl, (e) Clay, (f) Laterites and (g) Mineralizations.
(4-20)	Internal hazard index (H_{in}) , external hazard index (H_{ex}) and gamma index $(I\gamma)$ in all types of samples
(4-21)	Correlation between annual effective doses calculated from gamma and alpha for the studied samples
(4-22)	Variation of O-Ps parameters (I_3, τ_3) with Radon gas concentration.
(4-23)	Size distribution of free volume holes for blank (non irradiated) and two irradiated SSNTDs by different radon concentrations; (a) for CR-39 (b) for Cinema film and (c) for both.
(4-24)	FTIR absorbance spectra for one blank (non-irradiated) and two different radon concentrations samples (a) for Cinema film and (b) for CR-39.