

Ain Shams University Faculty of Engineering Electrical Power and Machines Department

Transient Stability Improvement of Grid Connected DFIG based on Wind Farm

M.Sc. Thesis By

Mohamed Magdy Mahmoud Mohamed

A thesis submitted in partial fulfillment of the requirements for the M.Sc. degree in Electrical Engineering

Supervised by:

Prof. Dr. Hussien Faried El-sayied Soliman Prof. Dr. Hany Mohamed Hasanien Dr. El-Hussein Abbas Mahmoud

Cairo, 2018

EXAMINERS COMMITTEE

Name: Mohamed Magdy Mahmoud Mohamed

Thesis title: Transient Stability Improvement of Grid Connected DFIG based on

Wind Farm

Degree: Master of Science degree in electrical engineering.

Name, title and affiliation

Signature

Prof. Dr. Ashraf Mohamed Hemeida

Electrical Power Department, Faculty of Energy Engineering, Aswan University

Prof. Dr. Hossam El-din Abdullah Talaat

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

Prof. Dr. Hussien Faried El-sayed Soliman

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

Prof. Dr. Hany Mohamed Hasanien

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

SUPERVISORS COMMITTEE

Name: Mohamed Magdy Mahmoud Mohamed

Thesis title: Transient Stability Improvement of Grid Connected DFIG based on

Wind Farm

Degree: Master of Science degree in electrical engineering.

Name, title and affiliation

Signature

Prof. Dr. Hussien Faried El-sayed Soliman

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

Prof. Dr. Hany Mohamed Hasanien

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

Dr. El-Hussein Abbas Mahmoud

Department of Offshore Operation
ADNOC Drilling

STATEMENT

This thesis is submitted to Ain Shams University as one of the requirements for Master of Science degree in Electrical Engineering.

The work in this thesis has been carried out by the author, and no part of this thesis has been submitted for a degree or qualification at any other university or institution.

Name: Mo	ohame	Magdy Mahmoud Mohamed
Signature	:	
Date:	/	/ 2018

RESEARCHER'S DATA

Name : Mohamed Magdy Mahmoud Mohamed

Place of birth : Baghdad – Iraq

Last academic degree : Bachelor of Electrical Engineering

Field of specialization : Electrical Power and Machines

University : Higher Technology Institute

Date of issued degree : 15/10/2012

Job : Electrical Engineer

ABSTRACT

Wind energy is playing a significant role in turning the world into a green source of energy. Therefore, the worldwide share of wind energy in the overall power capacity is soaring upwards. Lately, lots of attention has been directed towards the notion of a variable-speed wind turbine (WT) given its relatively high quality, controllability and efficiency. As a result of the rise in demand for variable speed WTs, the demand for control rises. Consequently, it is necessary to examine the wind turbine-generator systems (WTGSs) techniques that could precisely simulate the performance of the WTGS components.

To obtain a stable WTGS power output, control techniques need to be improved by taking into consideration the previously obtained WTGS models' results. The given regulation strategies consist of the grid, generator converter side controls, maximum power point tracking control and pitch angle control. The grid converter side is applied to stabilize the DC-link voltage and generate a unity power factor considering the grid-side WTGS. The regulator of the generator-side converter is capable of regulating the reactive power as well as torque. At the stator terminals, the active power reference values are delivered using the maximum power point tracking controller. The pitch-angle control is meant to limit the maximum output power equal to the rated power and only activated at high wind speeds.

In this thesis, an artificial intelligence controller is used when varying the rotor speed for getting different operating modes at sever conditions. The results of both PI and ANN controllers are then compared. The validity of the proposed model is designed through MATLAB/SIMULINK. The adaptive neural network system focuses on improving the use of wind power while connecting to the grid. Nowadays, the variable speed-pitch control Doubly Fed Induction Generator (DFIG) constructed WT with variable-scheme has become the most well-known wind energy generator. This machine can operate at different modes either when its grid-connected or standalone mode. An understanding is necessary for the modeling, control scheme, and dynamic also the stable machine state analysis in the functional modes to extract the optimal wind energy power while giving an accurate predication for its performance and behavior.

ACKNOWLEDGMENT

Thank God, for the wisdom, knowledge and his countless blessings on me.

I would like to thank my supervisors: Prof. Dr. Hussein Faried Soliman, Prof. Dr.

Hany Mohamed Hasanien and Dr. El-Hussien Abbas Mahmoud for their continuous

guidance, support, and encouragement throughout my research study. I have learned

valuable lessons from their wisdom, carefulness, and vision. They have been wonderful

advisors to me and have left a major impact on my life. I cannot possibly list all that I

have learned from them.

I would also like to express my sincere gratitude and appreciation to the committee

members and the professors for the time they dedicated to examining and reviewing my

work, their valuable feedback and useful suggestions which helped make this thesis a

more comprehensive one.

I am grateful for my parents, my wife and my brother, who helped me throughout

the thesis. Thank you for supporting me every day. Finally, I would like to dedicate this

work to the memory of my father.

Mohamed Magdy Mahmoud

Cairo, 2018

vii

TABLE OF CONTENTS

Abstract	vi
Acknowledgment	vii
Table of Content	viii
List of Figures	xi
List of Tables	xvi
List of Abbreviations	xvii
List of Symbols	xix
Chapter 1 Introduction	1
1.1 General	1
1.1.1 Wind Energy History	2
1.1.2 Wind Turbines	
1.2 Constituents of a Wind Turbine Generator System (WTGS)	8
1.2.1 WT Concepts	10
1.2.2 WTGS Operating Regions	12
1.3 Wind Turbine-Generator System Control Strategies	13
1.4 Wind Turbine-Generator System Power Converter Topologies	14
1.5 Motivation	16
1.6 Research Objective	17
1.7 Thesis Organization	17
Chapter 2 MODELING OF A WIND TURBINE-GENERATOR SYSTEM.	18
2.1 General	18
2.2 DFIG Wind Turbine Scheme.	18
2.3 Aerodynamic Model	19
Chapter 3 <u>Doubly Fed Induction Generators (DFIG)</u>	21
3.1 General	21
3.2 Principles of Working	21
3.3 DFIG Modeling.	23

3.3.1 Electric Relations	23
3.3.2 Mechanical Relations	24
3.4 Dq0-reference Frame	25
3.5 Modeling in dq0-reference Frame	27
3.5.1 Electric Equations	27
3.5.2 Phasor Notion	30
2.5.3 Mechanical Equations	30
3.6 Per-unit System	32
3.7 Electromagnetic Brake Chopper	34
3.7.1 Fault Ride Through	35
3.7.2 DC-link Braking Resistor Strategy	35
Chapter 4 Effect of PI Controller Parameters on The Transient	Stability Of
<u>DFIG</u>	36
4.1 General	36
4.2 Simulink Model of Controller Scheme	35
4.3 Results and Discussion.	37
4.3.1 Speed Controller	38
4.3.2 Current Controller	39
4.4 Case Studies	40
4.4.1 First Case Study	41
4.4.2 Second Case Study	44
4.4.3 Third Case Study	47
4.4.4 Fourth Case Study	50
Chapter 5 Effect of ANN Controller Parameters on The Transic	
<u>DFIG</u>	58
5.1 General	58
5.2 Conventional Controllers	58
5.3 Main Idea of the Artificial Neural Network	59
5.4 Artificial Neural Network (ANN)	60
5.4.1 Advantages of ANN	60
5.4.2 Disadvantages of ANN	60
5.4.3 The Neuron Model	61

5.4.4 Feed Forward Network	61
5.4.5 The Activation Function	62
5.4.6 The Generalized Delta Rule	64
5.4.7 The Back-Propagation Algorism	65
5.4.8 The On-Line Back Propagation	66
5.5 Results and Discussion	66
5.5.1 Speed Controller	66
5.5.2 Current Controller	67
5.6 Case Studies	68
5.4.1 First Case Study	68
5.4.2 Second Case Study	74
5.4.3 Third Case Study	79
Chapter 6 Conclusions and Suggested Future Wok	84
6.1 Conclusion.	84
6.2 Recommendations for Future Research	84
References	85

LIST OF FIGURES

Figure 1.1: WECS grid-connected components
Figure 1.2: Heron's wind-powered organ
Figure 1.3: The Persian, horizontal windmill
Figure 1.4: Instances of VAWT (a, b, and c)5
Figure 1.5: Instances of HAWT6
Figure 1.6: WTGS components
Figure 1.7: Power curve of a variable speed wind turbine
Figure 1.8: Doubly-fed induction generator
Figure 1.9: Full-scale converter generator
Figure 1.10: Squirrel cage IG
Figure 2.1: DFIG WT scheme
Figure 3.1: Schematic presentation of DFIG and its converters
Figure 3.2: Relationship between the synchronous (thick), rotor (dashed) and stator (thin) reference frames
Figure 3.3: DFIG equivalent circuit
Figure 3.4: Schematic Diagram of full converter wind turbine with dc-brake chopper.34
Figure 4.1: Single line diagram of studied system
Figure 4.2: Speed Controller Outer Loop
Figure 4.3: Rotor Current Regulator Controller Inner Loop
Figure 4.4: Simulation result of DC link voltage at full load when changing DC link voltage controller parameters of PI

Figure 4.5: Simulation result of active power at full load when changing DC link
voltage controller parameters of PI42
Figure 4.6: Simulation result of reactive power at full load when changing DC link voltage gain controller parameters of PI
Figure 4.7: Simulation result of terminal voltage at full load when changing DC link voltage controller parameters of PI
Figure 4.8: Simulation result of Active Power response at full load with varying rotor current regulator PI controller gains
Figure 4.9: Simulation result of reactive Power response at full load with varying the rotor current regulator PI controller gains
Figure 4.10: Simulation result of DC linkage voltage response at full load when varying the rotor current regulator PI controller gains
Figure 4.11: Simulation result of terminal voltage response at full load when varying the rotor current regulator PI controller gains
Figure 4.12: Simulation result of Active Power at full load when changing the rotor current regulator PI Controller parameters
Figure 4.13: Simulation result of reactive Power at full load when changing the rotor current regulator PI Controller parameters
Figure 4.14: Simulation result of DC link voltage at full load when changing the rotor current regulator PI Controller parameters
Figure 4.15: Simulation result of terminal voltage at full load when changing the rotor current regulator PI Controller parameters
Figure 4.16: Simulation result of active Power using brake chopper when varying DC link voltage PI controller gains
Figure 4.17: Simulation result of reactive power impact using brake chopper when changing DC link voltage PI controller gains51
Figure 4.18: Simulation result of DC link voltage using brake chopper when changing its PI controller gains
Figure 4.19: Simulation result of terminal voltage using brake chopper when changing DC link voltage PI controller gains

regulator PI Controller gains and using brake chopper	
Figure 4.21: Simulation result of reactive Power at full load with varying rotor curre regulator PI Controller gains and using brake chopper	
Figure 4.22: Simulation result of DC link voltage at full load when changing the rote current regulator PI Controller gains and using brake chopper	
Figure 4.23: Simulation result of terminal voltage at full load when changing the rote current regulator PI Controller gains and using brake chopper5	
Figure 4.24: Simulation result of Active Power using brake chopper when varying rotor current regulator PI Controller gains	56
Figure 4.25: Simulation result of reactive Power using brake chopper when varying rotor current regulator PI Controller gains	
Figure 4.26: Simulation result of DC link voltage using brake chopper when varying rotor current regulator PI Controller gains	
Figure 4.27: Simulation result of terminal voltage using brake chopper with varying rotor current regulator PI Controller gains	
Figure 5.1: The simplest representation of the neuron.	59
Figure 5.2: Feedforward artificial neural network	62
Figure 5.3: Depicts the shape of the sigmoid logistic function	63
Figure 5.4: The tangent (tanh) sigmoid activation function	63
Figure 5.5: Multi-layer feed forward ANN	64
Figure 5.6: Simulation result of active power at full load with brake chopper when changing the learning rate and fixed number of neurons in hidden layer .6	69
Figure 5.7: Simulation result of reactive power at full load with brake chopper when	l
changing the learning rate and fixed number of neurons in hidden	
layer	70
Figure 5.8: Simulation result of DC link voltage at full load when changing the	
learning rate and fixed number of neurons in hidden layer with using	
brake chopper	70

Figure 5.9: S	Simulation result of terminal voltage at full load with brake chopper when
	changing the learning rate and fixed number of neurons in hidden layer71
Figure 5.10:	Simulation result of active power at full load with brake chopper when changing the number of neurons in hidden layer and fixed learning rate
Figure 5.11:	Simulation result of reactive power at full load with brake chopper when changing the number of neurons in hidden layer and fixed learning
Figure 5.12:	rate
	rate
Figure 5.13:	Simulation result of terminal voltage at full load with brake chopper when changing the number of neurons in hidden layer and fixed learning rate
Figure 5.14:	Simulation result of active Power full load response with using the traditional PI controller vs ANN Controller74
Figure 5.15:	Simulation result of reactive Power full load impact with using the traditional PI controller vs ANN Controller
Figure 5.16:	Simulation result of DC voltage full load impact with using the traditional PI controller vs ANN Controller
Figure 5.17:	Simulation result of terminal Voltage full load impact with using the traditional PI controller vs ANN Controller76
Figure 5.18:	Simulation result of active Power response with half load with using the traditional PI controller vs ANN Controller
Figure 5.19:	Simulation result of reactive Power response at half load with using the traditional PI controller vs ANN Controller
Figure 5.20:	Simulation result of DC voltage impact at half loaded with using the traditional PI controller vs ANN Controller
Figure 5.21:	Simulation result of terminal voltage impact at half loaded with using the traditional PI controller vs ANN Controller
Figure 5.22:	Simulation result of active power at full load for the traditional PI controller with the ANN controller and using brake chopper79
Figure 5.23:	Simulation result of reactive power at full load for the traditional PI controller with the ANN controller and using brake chopper80

Figure 5.24: Simulat	ion result of DC link voltage at full load for the traditional PI	
controll	ler with the ANN controller and using brake chopper	80
Figure 5.25: Simulat	ion result of terminal voltage at full load for the traditional PI	
controll	ler with the ANN controller and using brake chopper	81
Figure 5.26: Simulat	ion result of active power at half loading for the traditional PI	
controll	ler with the ANN controller and using brake chopper	82
Figure 5.27: Simulat	ion result of reactive power at half loading for the traditional PI	
controll	ler with the ANN controller and using brake chopper	82
Figure 5.28: Simulat	ion result of DC link voltage at half loading for the traditional P	ľ
controll	ler with the ANN controller and using brake chopper	83
Figure 5.29: Simulat	ion result of terminal voltage at half loading for the traditional F	PI
controll	ler with the ANN controller and using brake chopper	83