

In vitro selection of somaclonal variant cells of Lycopersicon esculentum cv. Super strain B following exposure to osmotic stress.

Thesis

Submitted for Partial Fulfillment of Master Degree of Science in Botany (Physiology and Tissue Culture)

By

Nehal Talaat Mohamed

B.Sc. in Science (Botany)
(2010)

Ain Shams University
Faculty of Science
Botany Department
2018

In vitro selection of somaclonal variant cells of Lycopersicon esculentum cv. Super strain B following exposure to osmotic stress.

Thesis

Submitted for Partial Fulfillment of Master Degree of Science in Botany

(Physiology and Tissue Culture)

By

Nehal Talaat Mohamed

B.Sc. in Science (Botany) (2010)

SUPERVISORS

Prof. Dr. Abla Hassan Nassar

Professor of Plant Physiology and Tissue Culture Botany Department, Faculty of Science, Ain Shams University

Prof. Dr. Magdy Mahmoud Mohamed

Professor of Biochemistry Biochemistry Department, Faculty of Science, Ain Shams University

Dr. Hebatollah Ahmed Ali Ismail

Lecturer of Plant Physiology and Tissue Culture Botany Department, Faculty of Science, Ain Shams University

> Ain Shams University Faculty of Science Botany Department 2018

Name: Nehal Talaat Mohamed Abdul Qader

Title of thesis: In vitro selection of somaclonal variant cells of Lycopersicon esculentum cv. Super strain B following exposure to osmotic stress.

Degree: Master Degree Of Science in Botany

This thesis for Master. degree has been approved by:

Supervision committee:

Prof. Dr. Abla Hassan Nassar

 $\label{professor} \mbox{Professor of Plant Physiology and Tissue Culture}.$

Botany Department, Faculty of Science, Ain Shams University.

Prof. Dr. Magdy Mahmoud Mohamed

Professor of Biochemistry.

Biochemistry Department, Faculty of Science, Ain Shams University

Dr. Hebatollah Ahmed Ali Ismail

Lecturer of Plant Physiology and Tissue Culture.

Botany Department, Faculty of Science, Ain Shams University.

Examination committee:

Prof. Dr. Om-Mohammed Ahmed Abdallah Khafagi

Professor of Plant Ecophysiology, Botany Department, Faculty of Science, Al-Azhar University.

Prof. Dr. Sayd Mohamed EL-Mahdy.

Professor of Biochemistry.

Biochemistry Department, Faculty of Science, Helwan University.

Prof. Dr. Abla Hassan Nassar

Professor of Plant Physiology and Tissue Culture.

Botany Department, Faculty of Science, Ain Shams University.

Prof. Dr. Magdy Mahmoud Mohamed

Professor of Biochemistry.

Biochemistry Department, Faculty of Science, Ain Shams University

Date: / / 2018

(وَقُلْ اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ وَالْنُوْمِنُونَ وَسَتُرَدُونَ إِلَى عَالِمِ الْغَيْبِ وَالشَّهَادَة فَيُنَبِّئُكُمْ بِمَا كُنتُمْ تَعْمَلُونَ (105) وَآخَرُونَ مُرْجَوْنَ لأَمْرِ اللَّهَ إِمّا يُعَذّبُهُمْ وَإِمّا يَتُوبُ عَلَيْهِمْ وَاللَّهُ عَلِيمٌ حَكِيمٌ (106))

سورة التوبة (104-105)

This thesis has not been previously submitted for any degree at this or any other university.

The references in the text will show specifically the extent to which I have availed myself of the work of other authors

Nehal Talaat Mohamed

Dedication

To my mother, my little daughter, my brother and my husband.

To the soul of my beloved father and uncle Tarek Agamy.

AKNOWLEDGEMENT

Firstly and Finally Thanks to Allah

I would like to express my sincere gratitude to **Prof. Dr. Abla Hassan Nassar**. Professor of Plant pPhysiology and Tissue Culture, Botany Department, Faculty of Science, Ain Shams University, **Prof. Dr.** Magdy Mohamed Professor Mahmoud of Biochemistry. Biochemistry Department, Faculty of Science, Ain Shams University and Dr. Hebatollah Ahmed Ali Ismail Lecturer of Plant Physiology and Tissue Culture, Department, Faculty of Science, Ain Shams University, for their continuous support, kind supervision, and fruitful discussions throughout this work.

I would also like to thank **Mr. Mohamed Hassan**, Assistant Lecturer, Biochemistry Department, Faculty of Science, Ain Shams University for kindly support, helping me throughout the molecular experiments of the present work.

I am also grateful to **Prof. Dr. Magda Mahmoud EL-Araby**, Head of Botany Department, and to the former heads of Botany Department, Faculty of Science, Ain Shams University, for their encouragement, support and valuable help.

I am also greatly indebted to my parents, my husband, my lovely little daughter, my family, my colleagues and all the staff in Botany Department for their kind support throughout my work.

LIST OF ABBREVIATIONS

ABB.	COMPLETE NAME
2,4-D	2, 4-Dichlorophenoxyacetic acid
ABA	Abscisic acid
APX	Ascorbate peroxidase
ASA	Ascorbic acid
BAP	Benzyl-aminopurine
BLAST	Basic Local Alignment searching tool
CAT	Catalase
CTAB	Hexadeyl trimethyl-ammonium bromide
DW	Dry weight
EC	Electrical conductivity
EDTA	Ethylene diamine tetra acetate
EL	Electrolyte leakage
FRAP	Ferric reducing antioxidant power assay
FW	Fresh weight
GPX	Glutathione peroxidase
GR	Glutathione reductase
GSH	Total reduced glutathione
GUS	β-glucuronidase reporter gene
H_2O_2	Hydrogen peroxide
HPLC	High-performance liquid chromatography

IAA	Indole-3-acetic acid
IBA	Indole-3-butyric acid
INDELs	Missence, insertion and deletion mutation
Kn	Kinetin
LD80	Sub-lethal concentration
MDA	Malondialdehyde
MS	Murashige and Skoog medium
MSI	Membrane stability index
NAA	Naphthalene-acetic acid
NCBI	National center for biotechnology
OD	Optical density
ORF	Open reading frame
PCR	Polymerase chain reaction
PEG	Polyethylene glycol
POX	Peroxidase
PPO	Polyphenol oxidases
PSI	Pressure per square inch
PVP40	Polyvinyl pyrrolidone
RAPD	Random amplification of polymorphic DNA
RGR	Relative growth rate
ROS	Reactive oxygen specie
RWC	Relative water content
SNPS	Single Nucleotide Polymorphisms
SOD	Superoxide dismutase
TAC	Total antioxidant capacity

TBA	Thiobarbituric acid
TCA	Trichloroacetic acid
TW	Turgid weight

ABSTRACT

Callus was induced from seeds of tomato plant (Lycopersicon esculentum cv. Super strain B) on MS medium supplemented with 0.5 mg/L Naphthalene-acetic acid (NAA), 0.5 mg/L Indole-3-acetic acid (IAA), 2 mg/L Benzyl-aminopurine (BAP) and 2 mg/L Kinetin (Kn). This callus was subjected to osmotic stress using elevated concentrations of mannitol (0.0, 50, 100, 150, 200, 250 and 300 mM). The sub-lethal concentration which killed about 80% of callus cells (ID₈₀) was determined to be 250 mM mannitol. The remaining 20% of cells which survived the sub-lethal concentration was selected visually and multiplied on the same medium composition and are considered somaclonal variant cells and designated as "selected callus line". Experiments were conducted to compare different metabolic activities of the selected callus line with the non-selected one (control callus, 0.0 mannitol). Results showed reduction in fresh weight of the selected line and non-significant reduction in relative water content (RWC) of both callus lines. No significant difference was recorded in electrolyte leakage percentage (EL%) or malondialdehyde content (MDA) between both lines. An enhanced total antioxidant capacity (TAC), peroxidase (POX) and ascorbate oxidase (ASO) activity and reduced activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) was found in the selected callus line. No change in the activity of catalase (CAT) between both lines was noticed, however hydrogen peroxide content (H₂O₂) increased in the selected line The selected callus line accumulated more ascorbic acid (AsA), GSH and abscisic acid (ABA), indicating that the selected callus line tends to rely on the non-enzymatic antioxidant mechanisms rather than enzymatic ones in spite of remarkable decrease in total phenols content and lycopene concentration in the selected line.

Effect of osmotic stress, induced by mannitol, on stress-related genes such as TAS14 gene and TSW12 gene was studied. The genomic DNA of both the selected and non-selected callus line was extracted according to CTAB protocol. The extracted genomic DNA was used for Ploymerase Chain Reaction (PCR) using specific 1 set of primers covering the entire coding sequence of TAS14 gene and TSW12 gene through the 2 exons then, the amplified product was sequencing and analyzed. The analysis revealed the presence of novel and published mutations in TAS14 and TSW12 genes. Some of these mutations lead to changes in amino acid sequence and consequently in protein structure.

CONTENTS

SUBJECT	
Preface	1
Literature review	16
Aim of the present work	48
I- PLANT TISSUE CULTURE STUDIES	
MATERIALS AND METHODS	49
Materials	49
i- Biological materials	49
ii- Chemicals	49
Methods	51
1. Seed sterilization and germination	51
2. Medium preparation and culture conditions	51
3. Morphogenetic response of <i>Lycopersicon esculentum</i> explants to <i>in vitro</i> culturing	54
4. Establishment of callus culture	
5. Determination of the sub-lethal concentration of mannitol and establishment of non-selected and selected callus lines	55
6. Growth of the non-selected and selected callus lines	56
7. Metabolic activities of the non-selected and selected callus lines	56
i) Determination of relative water content (RWC)	57
ii) Estimation of osmolality	58
iii) Determination of electrolyte leakage (EL)	58

Contents

iv) Estimation of membrane stability index (MSI)	59
v) Estimation of lipid peroxidation product, Malon-dialdehyde (MDA)	59
vi) Estimation of total antioxidant capacity (TAC)	60
vii) Assaying the activity of antioxidant enzymes	
- Extraction	
- Estimation	61
a) Measuring the activity of superoxide dismutase (SOD) EC 1.15.1.1	61
b) Measuring the activity of catalase (CAT) EC 1.11.1.6	62
c) Measuring the activity of peroxidase (POX) EC 1.11.1.7	63
d) Measuring the activity of ascorbate oxidase (ASO) EC 1.10.33.3	63
e) Measuring the activity of ascorbate peroxidase (APX) EC 1.11.1.11	64
viii) Estimation of ascorbic acid (AsA)	64
ix) Estimation of hydrogen peroxide (H ₂ O ₂)	65
x) Estimation of total reduced glutathione (GSH)	66
xi) Estimation of total phenols	67
xii) Lycopene extraction and estimation	68
xiii) Determination of abscisic acid (ABA)and Indole -3-acetic acid (IAA)	69
xiv) Statistical analysis	71
II-MOLECULAR STUDIES	72
Materials and Methods	72
Materials	72

Contents

i- Biological materials	72
ii-Chemicals	72
 Reagents and Solutions 	72
- Buffers	
Methods	76
Techniques for DNA analysis	76
1. DNA extraction from plant cells (callus culture)	76
2. Agarose Gel Electrophoresis	79
3. Quantification of DNA using Double-beam uv-vis spectrophotometer	80
4. Polymerase chain reaction (PCR)	80
5. PCR reaction purification	83
6. Purification of DNA from gel for sequencing	85
7. Sequencing of DNA	87
8. Alignment and Analysis of sequence data	88
RESULTS	89
I- PLANT TISSUE CULTURE STUDIES	89
i) Morphogenetic response of <i>Lycopersicon esculentum</i> explants to <i>in vitro</i> culturing	89
ii)Determination of the sub-lethal concentration of mannitol and establishment of selected and non-selected callus lines	116
iii) Growth of selected and non-selected callus lines	120
iv) Metabolic activities of the selected and non- selected callus lines	120
*Relative water content (RWC) and osmolality	
*Electrolyte leakage (EL%), Lipid peroxidation product (MDA), membrane stability index (MSI) and total antioxidant capacity (TAC).	124

Contents

*Antioxidant enzymes and hydrogen peroxide (H ₂ O ₂)	
*Ascorbic acid (AsA) and total reduced glutathione	128
(GSH)	120
*Total phenols and lycopene	
*Abscisic acid (ABA) and Indole-3-acetic acid IAA	
II- MOLECULAR STUDIES	133
PCR amplification product	
Detection of Mutation by PCR-sequence products	136
Data analysis of TAS14 gene	
Data analysis of TSW 12	
DISCUSSION	150
SUMMARY	177
REFERENCES	
ARABIC SUMMARY	1