The study of Mean Platelet Volume (MPV) as a Potential Risk Factor for Macrovascular Complications (Ischemic Heart Disease and Cerebrovascular Stroke) in Type 2 Diabetes Mellitus

Thesis

Submitted for Partial Fulfillment of M.D degree in Internal Medicine

By

Yasmeen Abd El majeed Mohammed
Master degree of Internal Medicine

Under Supervision of

Prof. Dr. / Hanan Mohammed Amer

Professor of Internal Medicine and Endocrinology Faculty of Medicine – Ain Shams University

Prof. Dr. / Khaled Mahmoud Makboul

Professor of Internal Medicine and Endocrinology Faculty of Medicine – Ain Shams University

Dr. / Bassem Murad Mostafa

Lecturer of Internal Medicine and Endocrinology Faculty of Medicine – Ain Shams University

Dr. / Caroline Adel Girgis

Lecturer of Internal Medicine and Endocrinology Faculty of Medicine – Ain Shams University

Faculty of Medicine - Ain Shams University
2018

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. / Hanan**Mohammed Amer, Professor of Internal Medicine and Endocrinology - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. / Khaled Mahmoud Makboul**, Professor of Internal Medicine and Endocrinology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr.** / **Bassem Murad Mostafa**, Lecturer of Internal Medicine and
Endocrinology, Faculty of Medicine, Ain Shams
University, for his great help, active participation and
guidance.

I wish to introduce my deep respect and thanks to **Dr. / Caroline Adel Girgis,** Lecturer of Internal Medicine and Endocrinology, Faculty of Medicine, Ain Shams University, for her kindness, supervision and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Yasmeen Abd El majeed Mohammed

List of Contents

Title	Page No.
List of Tables	i
List of Figures.	iii
List of Abbreviations	vii
Introduction	1
Aim of the Work	4
Review of Literature	
Diabetes Mellitus	5
Platelets	40
The Mean Platelet Volume	67
Subjects and Methods	
Results	94
Discussion	
Summary	178
Conclusion	189
Recommendations	190
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Clinical features that commonl	177
Table (1):	distinguish T1DM and T2DM	•
Table (2):	Criteria for diagnoses of diabetes	
Table (3):	Stages of diabetic nephropathy	
Table (4):	The major glycoprotein receptors of	
_ = = = = = = = = = = = = = = = = = = =	platelet surface	
Table (5):	Descriptive data of group I	
Table (6):	Descriptive data of group I	
Table (7):	Descriptive data of group II	
Table (8):	Descriptive data of group II	118
Table (9):	Descriptive data of group III and IV	
Table (10):	Descriptive data of group III and IV	120
Table (11):	Comparison between the 4 studie	
	groups regarding different parameters	
Table (12):	Comparison between the 4 studie	
	groups regarding different parameters	
Table (13):	Comparison between the 4 studie	
	groups regarding MPV	
Table (14):	Comparison between the 4 studie	
m 11 (15)	groups regarding IMT	
Table (15):	Comparison between group 1a and 1	
Table (16).	regarding different parameters	
Table (16):	Comparison between group 1a and 1 regarding different parameters	
Table (17):	Comparison between group 2Aa an	
1 able (17):	2Ab regarding different parameters	
Table (18):	Comparison between group 2Aa an	
1 abic (10).	2Ab regarding different parameters	
Table (19):	Comparison between group 2Ba an	
(10)•	2Bb regarding different parameters	
Table (20):	Comparison between group 2Ba an	
(3/-	2Bb regarding different parameters	

List of Tables (Cont...)

Table No.	Title	Page No.
Table (21):	Comparison between group 3a and	3b
	regarding different parameters	147
Table (22):	Comparison between group 3a and	3b
	regarding different parameters	148
Table (23):	Comparison between group 4a and	4b
	regarding different parameters	150
Table (24):	Comparison between group 4a and	4b
	regarding different parameters	151
Table (25):	ROC curve	155
Table (26):	Correlation between MPV and oth	ner
	different parameters among the	4
	studied group	156

List of Figures

Fig. No.	Title Pag	e No.
Figure (1):	Overview of the most significant	4.4
Figure (2):	symptoms of diabetes Mechanisms by which hyperglycemia	14
rigure (2):	induced diabetic vascular complications	18
Figure (3):	Steps of megakaryopoeisis	
Figure (4):	Overview of platelet formation from HSC	
8 (-/-	to functional activated platelets	42
Figure (5):	Endomitotic synchronous nuclear	
	replication	44
Figure (6):	Proplatelet formation inside the blood	
	sinusoids and subsequent release of	
D: (F)	platelets	45
Figure (7):	Stained peripheral blood smear showing	F 0
Figure (8):	numerous platelets	
Figure (9):	Platelet-activation mechanisms and role	
rigure (b).	of different receptors	60
Figure (10):	The functions of platelets, procoagulant,	
8 , ,	aggregating and contracting platelets	61
Figure (11):	Platelet activation and subsequent	
	activation of arachidonic acid pathway	63
Figure (12):	The role of platelets in immunity, via	
	TLR, CD40 and dendritic cell (DC)	
E' (19)	activation	
Figure (14):	The difference between aviagant and	69
Figure (14):	The difference between quiescent and activated platelets	73
Figure (15):	Comparison between the 4 studied groups	10
118010 (10).	regarding age and weight	123
Figure (16):		
	regarding systolic and diastolic blood pr	124
Figure (17):		
	regarding BMI	125

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (18):	Comparison between the 4 studied gro	oups
_	regarding Hypertension	
Figure (19):	Comparison between the 4 studied gro	oups
	regarding HbA1c	127
Figure (20):	Comparison between the 4 studied gro	oups
	regarding cholesterol and TG	128
Figure (21):	Comparison between the 4 studied gro	-
	regarding HDL and LDL	129
Figure (22):	Comparison between the 4 studied gro	-
	regarding FBS and 2hpp	
Figure (23):	Comparison between the 4 studied gro	-
	regarding fundus examination	
Figure (24):	Comparison between the 4 studied gro	-
	regarding abdominal US	
Figure (25):	Comparison between the 4 studied gro	-
	regarding MPV	
Figure (26):	Comparison between the 4 studied gro	-
	regarding IMT	
Figure (27):	Comparison between group 2Aa and	
F! (20)	regarding Fasting insulin	
Figure (28):	Comparison between group 2Aa and	
E' (90)	regarding HOMAIR	
Figure (29):	Comparison between group 2Ba and	
Fig (90)	regarding cholesterol, LDL and FBG.	
Figure (30):	Comparison between group 2Ba and	
Figure (91).	regarding IMT	
Figure (31):	Comparison between group 3a and	
Figure (32):	regarding abdominal US Comparison between group 4a and	
r igure (52):	regarding weight, BMI and diastolic b	
	pr	
Figure (33):	Comparison between group 4a and	
rigure (00).	regarding abdominal US	153

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Figure (34):	Comparison between group 4a and regarding TG, HDL and LDL		154
Figure (35):	ROC curve analysis for the diagnovalue of MPV in discrimination betw	stic	
	diabetic patients with macrovasco	ular	
	complications (group II) and diab patients without macrovasco		
E: (90).	complications (group I)		155
Figure (36):	Correlation between MPV and age am the 4 studied groups		157
Figure (37):	Correlation between MPV and we among the 4 studied groups	ight	157
Figure (38):	Correlation between MPV and I	ВМІ	197
Figure (39):	among the 4 studied groups Correlation between MPV and duratio		158
rigure (59):	diabetes among the 4 studied groups.		158
Figure (40):	Correlation between MPV and syst blood pressure among the 4 stud		
	groups		159
Figure (41):	Correlation between MPV and diast blood pressure among the 4 stud		
	groups		159
Figure (42):	Correlation between MPV and Hb among the 4 studied groups		160
Figure (43):	Correlation between MPV and T	otal	
Figure (44):	cholesterol among the 4 studied groups Correlation between MPV and TG am		160
J	the 4 studied groups		161
Figure (45):	Correlation between MPV and I among the 4 studied groups		161
Figure (46):	Correlation between MPV and H	PG	
	among the 4 studied groups		162

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (47):	Correlation between MPV and 2 plasma glucose among the 4 stu	
	groups	162
Figure (48):	Correlation between MPV and among the 4 studied groups	
Figure (49):	Correlation between MPV and among the 4 studied groups	
	0 1	

List of Abbreviations

Abb.	Full term
ADA	American Diabetes Association
	Advanced glycation end product
	Burst-forming unit-erythroid
	Burst forming units – megakaryocytes
CFRD	Cystic fibrosis-related diabetes
CFU-GEMM	Colony-forming unit-granuloycte-erythrocyte- monocyte-megakaryocte
CFU-MK	Colony-forming unit-megakaryocyte
<i>CMP</i>	Common myeloid progenitor
CVD	Cardiovascular disease
<i>DAN</i>	Diabetic autonomic neuropathy
DC	$D endritic\ cell$
DM	Diabetes Mellitus
<i>DSPN</i>	Distal symmetrical sensorimotor
	polyneuropathy
DV	$ Diabetic\ vasculopathy$
<i>EDTA</i>	Et hyle ne diamine te tra-acid
FOG-1	Friend of GATA
<i>GAD</i>	$ Glutamic\ Acid\ Decarboxy lase$
<i>GDM</i>	Gestational diabetes mellitus
<i>GP</i>	Gly coproteins
HbA1c	Glycated hemoglobin
HDL	High-density lipoprotein
HLA	Human leukocyte antigen
<i>HSC</i>	Hematopoietic stem cell
<i>IDF</i>	$ International\ Diabetes\ Federation$
<i>IFG</i>	Impaired fasting glucose
<i>IGT</i>	Impaired glucose tolerance
<i>IMT</i>	Intima-media thickness

List of Abbreviations (Cont...)

Abb. Full term

<i>IR</i>	Insulin resistance
kDa	Kilodalton
<i>MAPK</i>	Mitogen activated protein kinase
	Maturity onset diabetes of the young
<i>MPV</i>	Mean platelet volume
NPDR	Nonproliferative diabetic retinopathy
	Non ST elevaton MI
<i>PAF</i>	Platelet activating factor
PARs	Protease-activated receptors
PCT	Plateletcrit
PDGF	Platelet derived growth factor
PDR	Proliferative diabetic retinopathy
PDW	Platelet distribution width
PI3-K	Phosphoinositide 3-kinase
	Protein kinase C
SDF-1	Stromal cell-derived factor1
STEMI	ST elevaton MI
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
	Thymus- and activation-regulated chemokine
TGF-B	Transforming growth factor B
TLR	Toll-like receptors
<i>UA</i>	Unstable angina
	Vascular endothelial growth factor
	Very low-density lipoprotein
	Zinc transporter 8

Introduction

Type 2 diabetes mellitus (T2DM) has reached global epidemic proportions, with more than 382 million people affected according to a 2013 estimate. By 2035, its prevalence is expected to reach 471 million, meaning that 10% of the world's population will have diabetes (*International Diabetes Federation*, 2013). Patients with diabetes often suffer from metabolic abnormalities, poor glycemic control, oxidative stress, insulin resistance, and low-grade inflammation. These conditions trigger vascular dysfunction, which predisposes them to atherothrombosis (*Pignone et al.*, 2010).

The coronary risks associated with T2DM are similar to those of nondiabetic patients with previous myocardial infarction (MI) (*Haffner et al.*, 2010). Diabetes almost doubles the risk of having a stroke. This is because high levels of glucose in blood can damage the blood vessels, making them harder and narrower and more likely to become blocked. If this happens in the cerebral blood vessels it could cause a stroke (*Stroke Association Factsheet*, 2015).

Diabetic subjects have a very high risk of death from stroke. More than one fifth of stroke deaths in the population can be attributed to diabetes, more in women than in men. Diabetes should be taken into account when the stroke risk profile of a population is analyzed *(Stroke, 2005)*. The cardiovascular risks remain high, even after optimal glycemic

and metabolic control has been achieved. Thus, identifying novel risk factors can provide better preventive strategies for individuals at high risk of cardiovascular events (Sansanayudh et al., 2014). Platelets have a key role in the development of acute complications of atherosclerosis. The first step in the development of atherosclerosis is the platelets' adhesion to the endothelium. As larger platelets are metabolically more active,

the volume of the platelet is one of the determinants of platelet

function.

Mean platelet volume (MPV) is a measure of the average size of platelets in the circulation. Considerable evidence suggests that MPV can be used as a potential biomarker of cardiovascular disease (CVD) (Sansanayudh et al., 2014).

In addition to the studies reporting that increase in the mean platelet volume (MPV) is an early indicator of inflammatory process and increased platelet activation, there are publications claiming that it constitutes a new risk factor for atherosclerosis (Murat et al., 2015).

Recent studies reported that increased MPV is associated with the presence of angina pectoris, severity of coronary artery occlusion, and even poor prognosis for acute MI (Sansanayudh et al., 2014).

Arterial stiffness is a manifestation of structural and functional changes in the vascular wall and a strong predictor

of cardiovascular events and mortality. It is also a link between diabetes and increased cardiovascular risks (Stehouwer et al., 2008).

Carotid B-mode high resolution ultrasonography is a noninvasive tool to assess intima-media thickness (IMT) and plaque presence in carotid arteries, visualizing changes in vascular morphology (Naqvi and Lee, 2014).

In clinical practice, carotid ultrasonography is widely accepted as efficient tool for identifying individuals at high risk for Cardiovascular diseases with predictive power for cardiovascular outcomes (Den Ruijter et al., 2012).

Murat et al., studied the relation between Aortic Intima-Media Thickness and Mean Platelet Volume in Children With Type 1Diabetes Mellitus, and a positive correlation was found between them (Murat et al., 2015).

Several studies reported that increased MPV is closely associated with cardiovascular risks in patients with diabetes; however, this remains controversial because others failed to observe an association between MPV and Cardiovascular diseases (Lekston et al., 2014).