

Reservoir Characterization of Thin Beds Within Miocene-Pliocene Sequence, West Manzala and Qantara, Onshore Nile Delta Utilizing Well logging Analysis and 3D Seismic Modeling

Ph.D Thesis
Submitted for Philosophy Doctor Degree
in Science (Geophysics)

Azza Abd El Rahman Kamel

(Master Degree in Geophysics, 1997)

Supervisors:

Prof. Dr. Nasser Mohamed Hassan Abu Ashour Prof. Dr. Adel Abd El Fattah El Bassyouni

Geophysics Department
Faculty of Science
Ain Shams University

Geology Department
Faculty of Science
Ain Shams University

Dr. Azza Mahmoud Abd El Latif

Geophysics Department
Faculty of Science
Ain Shams University

To
Geophysics Department, Faculty of Science
Ain Shams University
Cairo
2018

APPROVAL SHEET FOR SUBMISSION Thesis Title:

Reservoir Characterization of Thin Beds within Miocene-Pliocene Sequence, West Manzala and Qantara, Onshore Nile Delta Utilizing Well Logging Analysis and 3D Seismic

Modeling

Name of candidate:

Azza Abd El Rahman Kamel

This thesis has been approved for submission by the supervisors:

1-	Prof. Dr. Nasser Mohamed Hassar	n Abou Ashour
		Signature:
2-	Prof. Dr. Adel Abdel Fatah El Bas	syouni
		Signature:
3-	Dr. Azza Mahmoud Abd El-Latif	
		Signature:

Prof. Dr.: Samy Hamed Abdel Naby Head of Geophysics Department Faculty of Science-Ain Shams University

ACKNOWLEDGMENTS

First of all, thanks to almighty "Allah" who supported me with a considerable assistance and without this help my task wouldn't be completed. I would like to acknowledge **Prof. Dr. Nasser Mohamed Hassan Abou Ashour,** Professor of Petrophysics, Geophysics department, faculty of Science, Ain Shams University, for his kindness supervisor, discussion, organization and guardedness throughout all the stages of this work.

Also, I am indebted to **Prof. Dr. Adel Abd El Fattah El Bassyouni,**Professor of petroleum geology, Geology department, faculty of Science,
Ain Shams University, for his cooperation and continuous help and goodness
throughout all the steps of this work. I would like to extend my thanks to **Dr. Azza Mahmoud Abd El Latif,** Dr. of Geophysics, Geophysics
department, faculty of Science, Ain Shams University, for her valuable
comments and sharing her precious time to review and support.

I am grateful to my colleges Dr. **Abd El Khalek El Werr**, Faculity of Science (Ain Shams University) and my collage in El Wastani Petroleum Company (WASCO) especially senior Geophysist **Mostafa Zakariya** and Exploration department (WASCO/Danagas) for their cooperation and help. I would like to dedicate my work to **my family** whose love, help and support kept me going.

Reservoir Characterization of Thin Beds Within Miocene-Pliocene Sequence, West Manzala and Qantara, Onshore Nile Delta Utilizing Well Logging Analysis and 3D Seismic

Modeling

Abstract

Miocene-Pliocene reservoir contributes the main gas production in onshore Nile Delta, Egypt, the paleo deposition environment distribution should be recognized and understand. Petrophysical analysis, seismic study was carried out at West Manzala and West Qantara area. The workflow combined seismic elastic properties, regional geological context, biostratigraphy and petrophysical reservoir properties in order to characterize the Miocene-Pliocene reservoir.

Wireline log analysis used to understand the petrophysical properties. Seismic interpretation was used to detect the subsurface structural and stratigraphic features. The results were collected together to build-up the reservoir static model.

Static model is representative tool to imagine the facies, petrophysical properties and structure of the study area. Such static model can support the detection of suitable places for hydrocarbon potential. Static model of Qawasim Formation in El Bassant area shows a combined trap formed of faulted 3 way dip closure with pinching out stratigraphic feature with Northeast- Southwest trend. Qawasim Formation consist of tidal dominated and fluvial dominated deposits, consequently, this study shows the Qawasim is composed of sand-shale intercalations with different types of sands (fluvial and tidal). Facies model is divided into 4 lithofacies description (shale, poor

quality sand, fair quality sand and good quality sand). The Qawasim sedimentation seems to be affected by growth faults which generate accommodation space leading to sediments accumulation around El Bassant area. The sequences were represented mainly by fluvial sediments. Qawasim modeling help to minimize the drilling risk by selecting the optimum location for new wells as structural and facies.

	List of Contents	Pages
List o	of Figures	VII
List o	f Tables	XV
CHA	CHAPTER (1): Introduction	
1.1	Location of West Manzala and West Qantara Study area	1
1.2	Aims of the present study	2
1.3	Available Data	2
1.4	Methodology and techniques	3
1.5	Exploration History	3
CHA	PTER (2): Geological Setting	7
2.1	Introduction	7
2.2	Structural Setting	10
2.2.1	Nile Delta Structural Setting	10
2.2.1.1	West El Manzala and West Qantara Concessions Structure Setting	14
2.3	Stratigraphic Setting	17
2.3.1	Pre-Miocene Stratigraphy	19
2.3.1.1	Paleozoic	20
2.3.1.2	2 Late Triassic/ Early Jurassic	20
2.3.1.3	3 Cretaceous	20
2.3.1.4	4 Eocene	21
2.3.2	Miocene Stratigraphy	23
2.3.3	Pliocene-Pleistocene Stratigraphy	32
CHAPTER (3): Well Log Evaluation		40
3.1	Data Handling	40
3.1.1	Sofwares	40
3.1.2	Log Editing and Quality Check	41
3.2	Petrophysical Analysis	42

3.2.1	Uncertainty to estimate Porosity, Shale Volume and Water	42
	Saturation	
3.2.2	Porosity Estimation	44
3.2.3	Lithology Discrimination	49
3.2.4	Shale Volume Calculation	50
3.2.5	Water Saturation	51
3.3	Petrophysical Analysis for Studied Reservoirs in Different wells	53
3.3.1	Qawasim Reservoir	53
3.3.1.1	El Bassant-1 Well	53
3.3.1.2	Balsam-1 Well	55
3.3.2	Abu Madi Reservoir	61
3.3.2.1	Faraskur-1 Well	61
3.3.3.2	El Wastani-4 Well	66
3.3.3	Kafr El Sheikh Reservoir	73
3.3.3.1	Sondos-1 Well	73
3.3.3.2	Sondos-1 Well Petrophysical Evaluation	73
CHAP	TER (4): Rock Physics Analysis	76
4.1	Introduction	76
4.2	Rock Physics Models for Lithology and Fluid Content Separation	77
4.2.1	Qawasim Formation	79
4.2.1.1	Qawasim Pay Zone in Balsam-1 Well	80
4.2.1.2	Qawasim Pay Zone in El Bassant-1 Well	85
4.2.2	Abu Madi Formation	89
4.2.2.1	Faraskur-1 Gas Well in Abu Madi Formation	89
4.2.2.2	El Bassant-1 Water Well in Abu Madi Formation	94
4.2.2.3	El Wastani-4 Gas Well in Abu Madi	97
4.2.3	Kafr El Sheikh Formation	100
4.2.3.1	Gelgel-2 Well	100

4.2.3.2	Gelgel-5 Well	104
CHAF	PTER (5): Seismic Interpretations	105
5.1	Introduction	105
5.2	Seismic Data	105
5.2.1	Seismic Acquisition	105
5.2.2	Source parameters	107
5.2.3	Receiver Parameters	107
5.2.4	Recording system	107
5.3	Seismic Processing	108
5.4	Seismic interpretation procedure	109
5.5	Methodology	110
5.5.1	Wells to Seismic Tie	110
5.5.2	Geo-seismic Condition	113
5.5.3	Fault Boundary Creation	115
5.5.4	Looping	115
5.5.5	Final Time Map Generation	117
5.5.5.1	Pliocene-Wastani Formation (Gelgel field)	117
5.5.5.2	Pliocene-Kafr El Sheikh Formation (Sondos field)	124
5.5.5.3	Miocene (Messinian) Abu Madi Formation (El Wastani and	127
	Faraskur Fields	
5.5.5.4	Miocene (Messinian) Qawasim Formation (El Bassant and Balsam	133
	Fields)	
CHAF	PTER (6): Seismic Attributes	142
6.1	Geological Discussion	142
6.2	Seismic Attributes Interpretation	144
6.2.1	Seismic Amplitude of Wastani Formation (Gelgel Field)	145
6.2.1.1	Full Stack Seismic Amplitude Map Of Wastani Formation	145
6.2.1.2	Far AVO Seismic Attribute Map Of Wastani Formation	147
6.2.1.3	Variance Amplitude Map of Wastani Formation	148

6.2.1.4 Envelope Amplitude Map of Wastani Formation	149
6.2.1.5 Relative Acoustic Impedance attribute map of Wastani Formation	149
6.2.1.6 Smoothed similarity amplitude map of Wastani Formation	151
6.2.2 Seismic Amplitude of Kafr El Sheikh Formation (Sondos Field)	151
6.2.2.1 Full Stack Seismic Attribute Map of Kafr El Sheikh Formation	152
6.2.2.2 Far AVO Seismic Attribute Map of Kafr El Sheikh Formation	153
6.2.2.3 Variance Seismic Attribute Map of Kafr El Sheikh Formation	154
6.2.2.4 Envelope Amplitude Map of Kafr El Sheikh Formation	155
6.2.2.5 Relative Acoustic Impedance Amplitude Map of Kafr El Sheikh	156
Formation	
6.2.2.6 Smoothed Similarity Attribute Map of Kafr El Sheikh Formation	157
6.2.3 Miocene (Messinian) Abu Madi Formation (El Wastani and	158
Faraskur Fields)	
6.2.3.1 Full Stack Seismic Attribute Map of Upper Abu Madi Formation	158
6.2.3.2 Far AVO Seismic Attribute Map of Upper Abu Madi Formation	160
6.2.3.3 Variance Seismic Attribute Map of Upper Abu Madi Formation	161
6.2.3.4 Envelope Amplitude Map of Kafr El Sheikh Formation	162
6.2.3.5 Relative Acoustic Impedance Amplitude Map Of Upper Abu Madi	163
Formation	
6.2.3.6 Smoothed Similarity Attribute Map of Upper Abu Madi Formation	164
6.2.4 Miocene (Messinian) Lower Abu Madi Formation (El Wastani and	165
Faraskur Fields)	
6.2.4.1 Full Stack Seismic Attribute Map of Upper Abu Madi Formation	165
6.2.4.2 Far AVO Seismic Attribute Map of Lower Abu Madi Formation	166
6.2.4.3 Variance Seismic Attribute Map of Upper Abu Madi Formation	167
6.2.4.4 Envelope Amplitude Map of Lower Abu Madi Formation	168
6.2.4.5 Relative Acoustic Impedance Amplitude Map of Upper Abu	169
Madi Formation	

6.2.5	Miocene /Messinian. Qawasim-I (El Bassant And Balsam Fields)	171
6.2.5	.1 Full Stack Seismic Attribute Map of Qawasim-I	171
6.2.5	.2 Far AVO Seismic Attribute Map of Qawasim-I	172
6.2.5	.3 Variance Seismic Attribute Map of Qawasim-I	174
6.2.5	.4 Envelope Amplitude Map of Qawasim-I	175
6.2.5	.5 Relative Acoustic Impedance Map of Qawasim-I	176
6.2.5	.6 Smoothed Similarity Attribute Map Qawasim-I	177
6.2.6	Miocene (Messinian) Qawasim-II (El Bassant and Balsam Fields)	178
6.2.6	.1 Full Stack Seismic Attribute Map of Qawasim-II	179
6.2.6	.2 Far AVO Seismic Attribute Map of Qawasim-II	180
6.2.6	.3 Variance Seismic Attribute Map of Qawasim-II	181
6.2.6	.4 Envelope Amplitude Map of Qawasim-II	182
6.2.6	.5 Relative Acoustic Impedance Map of Qawasim-II	183
6.2.6	.6 Smoothed Similarity Attribute Map Qawasim-II	184
6.3	Summary	189
CHA	APTER (7): Static Reservoir Modeling	190
7.1	Introduction	190
7.2	Categories of Reservoir Modeling	191
7.3	Structural Model	193
7.3.1	Fault Modeling	193
7.3.2	Pillar Gridding	194
7.3.3	Making Horizons	196
7.4	Facies Model	198
7.4.1	Scale up Facies Log	199
7.5	Petrophysical Model	201
7.5.1	Effective Porosity	201
7.5.2	Water saturation	202

7.6 Conclusion	203
Summary and Conclusions	204
References	208

List of Figures

Figure No.	Pages
CHAPTER (1): Introduction	1
1.1 : Location of study area	1
CHAPTER (2): Geological Setting	8
2.1 : Main Tectonic Features of the Nile Delta, Sinai and South East	12
Mediterranean Region (Sestini, 1989).	
2.2 : North Nile Delta Province Structural Framework. (Dan Gas	13
Internal Report, 2009).	
2.3 : West El Manzala and West Qantara Concession Fault Pattern	15
(Dana Gas Internal Report, 2009).	
2.4 : East -West Regional Cross Section in the Nile Delta Showing	16
El Manzala and West El Qantara Concessions.	
2.5 : N-S Line Across the Nile Delta Showing the Different Provinces	18
2.6 : Lithostratigraphic and Depositional Environment of Nile Delta	22
(Dana Gas, 2009).	
2.7 : Qantara Isopach Map for the Study Area.	25
2.8 : Top Sidi Salim Structure Contour Map.	27
2.9 : Late Miocene Stratigraphic Classification after (EREX, 2000).	29
2.10: Qawasim Isopach Map for the Study Area.	30
2.11: Abu Madi Formation Isopach Map for the Study Area	32
2.12: Kafr El Sheikh Formation Isopach Map.	36
2.13: Pliocene-Pleistocene Classification (EREX, 2009).	37
2.14: Subdivision of Kafr El Sheikh Formation into three Mega	38
Sequences Consistent with Global Eustatic Curve changes (El	
Haq et al., 1989).	
2.15: El Wastani Formation Isopach Map.	39
CHAPTER (3): Well Logging Evaluation	40
3.1 Porosity from the neutron and Density log of Balsam-1 well.	46

3.2 : Gamma ray histogram from the well Balsam -1	50
3.3 : The Petrophysical Analysis of Qawasim-1 in El Bassant-1 Well	54
3.4 : MDT Pressure Points of El Bassant-1 Well	55
3.5 : Petrophysical Analysis for Qawasim-I in Balsam-1 Well	57
3.6 : Petrophysical Analysis for Qawasim-II in Balsam-1 Well	58
3.7 : MDT Pressure Points of Balsam-1 Well.	60
3.8 : Petrophysical Analysis for Abu Madi Formation in Faraskur-1	63
Well	
3.9 : MDT Pressure Data for Upper Abu Madi in Faraskur-1 Well.	64
3.10: MDT Pressure Data for Lower Abu Madi in Faraskur-1 Well.	65
3.11: Petrophysical Analysis for Abu Madi Formation in	68
El Wastani-4 Well	
3.12: Neutron Density Crossplot in Abu Madi Formation in	69
El Wastani-4 Well	
3.13: Thorium-Potassium Crossplot in Abu Madi Formation in El	70
Wastani-4 Well.	
3.14: Vp/Vs & Compressional Slowness Crossplot in Abu Madi	70
Formation in El Wastani-4 Well	
3.15: Pressure Data for Upper & Lower Abu Madi and Qawasim	71
Reservoirs in El Wastani-4 Well.	
3.16: Stratigraphic Correlation flatten on the Top of Upper	72
Abu Madi Formation.	
3.17: Structural Correlation for Top Upper Abu Madi Formation	72
3.18: Kafr El Sheikh Sand-A Log Analysis for Sondos-1 Well	74
3.19: Kafr El Sheikh Sand-B Log Analysis for Sondos-1 Well.	75
CHAPTER (4): Rock Physics Analysis	76
4.1 : Neutron-Density Crossplot in Balsam-1 Well with Vclay in Z-	80
axis for the Top Tight Sand Reservoir	
4.2 : Neutron-Density Crossplot for Balsam-1 Well in Qawasim	81

Formation with Excellent Gas Effect in Clean Gas Sand	
Reservoir	
4.3 : Vp-Vs Crossplot for Balsam-1 Well in Qawasim Formation	82
Showing the Separation Sand from Clay and Gas Sand from Wet	
Sand	
4.4 : Poisson's Ratio-Depth Crossplot for Balsam-1 Well in Qawasim	83
Formation	
4.5 : Vp/Vs Ratio-Vp Crossplot for Balsam-1 Well in Top Tight Sand	84
of Qawasim Pay-2	
4.6 : Poisson's Ratio-Vp Crossplot for Balsam-1 Well in Excellent	85
Qawasim Sand Pay-2	
4.7 : Acoustic Impedance Vs Depth Crossplot for El Bassant-1 Well.	86
4.8 : Acoustic Impedance Calculated from Logs Vs Neutron Porosity	87
Crossplot in El Bassant-1 Well	
4.9 : Crossplot between Acoustic Impedance and Deep Resistivity for	88
Both El Bassant-1 and Balsam-1 Wells	
4.10 : Crossplot between the Calculated Acoustic Impedance from	89
Logs and the Calculated Relative Acoustic Impedance from	
Seismic for El Bassant-1 and Balsam-1 Wells.	
4.11: Crossplot between Relative Acoustic Impedance and Neutron	90
Porosity	
4.12: Crossplot between Relative Acoustic Impedance Derived from	91
Seismic Volume and the different in AVO Near and Far AVO	
trace gathers in Faraskur-1 Well.	
4.13: Crossplot between Different AVO (Near and Far) and Fluid	92
Stack Derived from Seismic Volume with Lithology in the Z	
axis in Faraskur-1 Well.	
3.14: Different Attributes Cutoff for Faraskur-1 Well used to	93
Differentiate between Gas Sand and other Lithology.	
4.15: Crossplot between Relative Acoustic Impedance Derived from	94

Seismic Volume and the Different in AVO Near and Far AVO	
Trace Gathers in El Bassant-1 Well.	
4.16: Crossplot between Different AVO (Near & Far) and Fluid Stack	95
Derived from Seismic Volume with Lithology in Z-Axis in El	
Bassant-1 Well.	
4.17: Different Attributes Cutoff for El Bassant-1 Well used to	96
Differentiate between Wet Sand and other Lithology.	
4.18: Crossplot between Acoustic Impedance Log and Depth for El	97
Wastani-4 Well.	
4.19: Crossplot between Far AVO and Near AVO Derived from	98
Seismic Volume For Several Wells Penetrated Abu Madi	
Formation.	
4.20: Crossplot between Relative Acoustic Impedance and Far AVO	99
Derived from Seismic Volume for Several Wells Penetrated	
Abu Madi Formation used Fluid Stack in The Z-Axis.	
4.21: Good Direct Relation between the Far AVO and the Fluid Stack	100
Attribute Volumes.	
4.22: Acoustic Impedance-Depth Crossplot for Gelgel-2 Well.	101
4.23: Crossplot between Acoustic Impedance Calculated from Logs	102
and Porosity from Neutron of Gelgel-2 Well.	
4.24: Crossplot between Relative Acoustic Impedance from Seismic	103
and Poisson's Ratio from Seismic Volume.	
4.25: Acoustic Impedance-Depth Crossplot for Gelgel-5 Well	104
CHAPTER (5): Seismic Interpretation	105
5.1 : Location map of 30 seismic lines in the study area.	109
5.2 : El Bassant-1, Time, Average Velocity and Interval	110
Velocity-Depth Relations.	
5.3 : El Wastani-4 Time-Depth relation	111
5.4 : Faraskur-1 time-depth relation	111