

جامعة القاهرة كلية الطب البيطري قسم الميكروبيولوجيا

Containment principals of *S. aureus* isolated from mastatic buffaloes

Thesis presented by Randa Samy Farag (B. V. Sc., 2003) (M.V.Sc., 2008)

For fulfilling the degree of PhD.

(Bacteriology-Immunology-Mycology)

Under the Supervision of

Prof. Jakeen Kamal Abdel Haleem ElJakee

Prof. of Microbiology Faculty of Vet. Medicine Cairo University

Prof. Emad Rizkalla Zaki Chief Researcher of Microbiology – IFBA certifier

Buffaloes Diseases Research Department (A.H.R.I.)

Faculty of Veterinary Medicine

Department of Microbiology

(Bacteriology, Immunology and Mycology)

Approval sheet

The examining committee approved **Mrs Randa Sami Farag Elias** for the Degree of PhD in Veterinary Medicine "Microbiology" (Bacteriology, Immunology and Mycology) from Cairo University.

Examining and judgment Committee:

Prof. Dr. Jakeen Kamal Abdel-Haleem El-Jakee

Professor of Microbiology

Faculty of Veterinary Medicine, Cairo University.

Prof. Dr. WagihArmnious Gad EL sayed

Professor of Microbiology

Faculty of Veterinary Medicine, Cairo University.

Prof. Dr. Ismail Abd EL Hafiz

Professor and Head of Microbiology Department

Faculty of Veterinary Medicine, Beni Swef University.

Prof. Dr. Emad Rizkalla Zaki

Chief Researcher of Microbiology –IFBA certifier, Buffaloes Diseases Ressearch Department, Animal Health Research Institute, Dokki, Giza.

Committee date

27/10/20

Supervision Sheet

"Containment principals of S.aureus isolated From mastitic buffaloes"

Thesis presented by:

Randa Sami Farag Elias

(B. V. Sc., Cairo University, 2003) (M.V.Sc., Cairo University, 2008)

For fulfilling the degree of PhD. (Bacteriology, Immunology and Mycology)

SUPERVISION COMMIT:

Prof. Dr. Jakeen Kamal Abdel-Haleem El-Jakee

Professor of Microbiology, Bacteriology, Immunology and Mycology Department. Faculty of Veterinary Medicine, Cairo University.

Prof. Dr.Emad Rizkalla Zaki

Chief Researcher of Microbiology – IFBA certifier, Buffaloes Diseases Ressearch Department, Animal Health Research Institute, Dokki, Giza.

Cairo University Faculty of Veterinary Medicine Department of Microbiology.

Name : Randa Samy Farag Elias

Birth date : 05/09/1979

Place of Birth : Cairo **Nationality** : Egyptian

Scientific degree: PhD of veterinary sciences.

Specification : Microbiology (Bacteriology – Immunology – Mycology).

<u>Thesis title</u>: Containment principals of *S. ureus* isolated From mastitic buffaloes.

Supervisors:

Prof. Dr. Jakeen Kamal Abdel-Haleem El-Jakee.

Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University.

Prof. Dr. Emad Rizkalla Zaki

Chief Researcher of Microbiology -IFBA certifier, Buffaloes Diseases Ressearch Department,

Animal Health Research Institute, Dokki ,Giza.

Abstract

Prevalence of mastitis among the examined farms showed that 183 animals out of 352 buffaloes showing signs of mastitis with a percentage of 51.98% distributed on the farms included as follow 53.91%; 67.50%; 26.92%; 38.09 % and 53.57% respectively. Results showed that, the percentage of quarters showing clinical mastitis were 23.53%; 17.65%; 22.46% and 36.36 %. Results obtained were 31.3%; 29.1%; 18.2% and 21.4% at the right hind, left hind, right fore and the left fore respectively. Obtained results revealed that 84 isolates of *S. aureus* from overall 183 mastitic animals with an incidence of 45.90% meanwhile, the incidence of isolation according to the total number of quarters 374 was 22.46%. The distribution of isolation from mastic animals and mastitic quarters were 43.55%;21.60,59.26%; 24.43, 14.29%; 13.33, 12.5%; 11.11% and 48.89%; 23.40 from Farms 1, 2, 3, 4 and 5 respectively. Regarding the virulence factors among the examined isolates, out of 84 *S. aureus* isolates only 39 were toxigenic 46.43% including 12 isolates had enterotoxin (A) 30.77% and the remaining 27 isolates had enterotoxin (D) 69.23%; all isolates of *S. aureus* had each staph protein A with an incidence of 100%; coagulase activity and hemolytic activity showed that all isolates were hemolytic (100%), 69 isolates (82.14%) were \$\mathbb{B}\$ hemolytic, and 15

isolates were & hemolytic (17.86%). Results of Polymerase chain reaction indicated that 5 isolates of S. aureus representing the five farms proved by culturing and biochemically were used for the detection of virulence factors and the results obtained showed that all isolates used (5) were positive to I6sRNA; sed; spa and coa, meanwhile 2 isolates were carrying both genes for hlb & icaA. Biosafety measures were assessed on our study using WHO hecklist (biosafety Level 1 and 2) plus data supported from material safety data sheet. Assessment of biosecurity among the 5 selected farms indicating that one farm 3 warned potential for failure of a biosecurity element and some action required, one farm 4; safe- meeting basic biosecurity practices and no action required and three farms (1, 2 and 5) alert biosecurity gap identified, action required. Correlation was exixted between the level of biosecurity and prevalence of S. aureus isolation and the results obtained clear it indicating that good biosecurity measure showing the lowest percentage of isolation S. aureus (12.5%) in farm 4, followed by farm 3 (14.29%), farm1 (43.55%), farm 5 (48.89%) and farm 2 (59.26%).

Dedicated to;

My dear parents,

dear husband: Shenouda,

dear brothers Maged,Ehab,Micheal

and

lovely son: Fady

lovely daughter: Maria

for their encouragement, efforts, support and endless help through out the whole work.

ACKNOWLEDGEMENT

I wish first to thanks forever My God for helping me to complete this work.

I would like to express my sincere gratitude for the kindness and encouragement of **Prof. Dr. Jakeen Kamal Abdel Haleem El Jakee** Professor of Microbiology, Faculty of Veterinary Medicine Cairo University, under her stimulating supervision, guideness, this work was carried out. She gave me the best example what a university professor should be.

It is a great pleasure to me to record all meaning of indebtedness to my scientific guide **Dr. Emad Rizkalla Zaki**, Buffaloes diseases research Department (AHRI), (IFBA certifier), for giving me so much of his valuable time, experience, scientific knowledge as well as his great endless help and encouragement throughout this work.

Thanks also are due to Chief Researcher and Head of Buffaloes Diseases Research Department and the members of Buffaloes Diseases Department, Animal Health Research Institute, Dokki, Giza, for their continuous support and encouragement during this work.

LIST OF CONTENTS

Title	Page
1. INTRODUCTION.	1
2. REVIEW OF LITERATURE.	
2.1. Incidence of <i>S.aureus</i> mastitis among clinical cases of bovine.	5
2.2. virulence factors of <i>S. aureus</i> .	10
2.3. An overview of biosecurity concepts.	22
3. Materials & Methods.	
3.1. Materials	31
3.1.1. Animals	31
3.1.2. Milk Samples	31
3.1.3. Media used for isolation and characterization of	
Staphylococci.	32
3.1.4. Reagents and solutions for biochemical tests.	33
3.1.5. Gram's staining	34
3.1.6. Biological material.	34
3.1.7. Diagnostic reagents.	34
3.1.8. Material used for extraction of DNA.	35
3.1.9. Equipment and apparatuses used for extraction of nucleic	
acids.	35
3.1.10. PCR Master Mix used for PCR.	36
3.1.11. oligonucleotide primers used in PCR.	36
3.1.12. DNA Molecular weight marker.	37
3.1.13. Material used for agarose gel electrophoresis.	37
3.1.14. Equipment and apparatuses used in PCR.	
3.2. Methods	
3.2.1. Sampling.	39

3.2.2 . Bacteriological examination.	39
3.2.3. Identification and characterization of the isolates.	39
3.2.4. Detection of staphylococcal enterotoxins by SET	
RPLA kit.	41
3.2.5. Extraction of DNA.	42
3.2.6. Preparation of PCR Master Mix.	43
3.2.7. Standard operating procedure (sop) <i>template</i> .	45
3.2.8. Basic laboratory – Biosafety Level 2: laboratory safety	
survey.	48
3.2.9. Self-Assessment Checklist.	51
4. Results.	58
5. Discussion.	118
6. SUMMARY.	135
7. REFERENCES.	138
8. ARABIC SUMMARY	

List of Tables

No.	Title	Page
1	Number of examined animals and mastitic quarters	31
2	Oligonucleotide primers sequences of all primers used in PCR	
	amplification assays and their respective PCR products	36
3	Number of animals showing signs of mastitis	59
4	Distribution of quarters showing clinical signs of mastitis	61
5	The prevalence of mastitic animals at quarter's level	62
6	Occurrence of <i>S.aureus</i> from mastitic animals and quarters	63
7	Result of enterotoxin producing isolates	65
8	Result of SPA of S.A isolates	66
9	Result of hemolysis on blood agar	67
10	Results of virulence factors among S. aureus isolated from mastitic	
	milk samples	67
11	Results of PCR of virulence factors of S. aureus isolated from mastitic	
	animals	68
12	standard operating procedure (sop)	75
13	Basic laboratory – Biosafety Level 2 (WHO check list)	78
14	Self-Assessment Checklist	83
15	The level of biosecurity in farms through counting number of	
	responses.	109
16	Analysis of the biosecurity measure in different farms.	110
17	Correlation between biosecurity measures, the percent of isolation of	
	S. aureus and the percent of mastitic animals.	116

List of Figures

No.	Title	Page
1	Number of animals showing signs of mastitis	60
2	Distribution of quarters showing clinical signs of mastitis	61
3	The prevalence of mastitic animals at quarter's level	62
4	Prevalence of <i>S. aureus</i> isolation from different farms.	64
5	Result of enterotoxin producing isolates	66
6	Occurrence of haemolysis activity on blood agar	67
7	Detection of 16SRNA gene of Staphylococcus aureus	69
8	Detection of coa gene of Staphylococcus aureus	70
9	Detection of spa gene of Staphylococcus aureus	71
10	Detection of hlb gene of Staphylococcus aureus	72
11	Detection of intracellular adhesive A (<i>IcA</i>) gene of <i>S. aureus</i>	73

12	Detection of enterotoxin D by PCR	74
13	Biosafety cabinet class II type A2 (working with pathogens Risk group II)	80
14	Disinfection and antiseptic	80
15	Laboratory design facility (Biosafety level 2)	81
16	Posted biohazard signs	82
17	The level of biosecurity in farms using counting number of responses.	109
18	Interpretation of the biosecurity measure in different farms.	110
19	Gates at access points	111
20	trucks from an outside source that have been cleaned and disinfected	111
21	Clothing or farm-designated clothing.	112
22	Feed and bedding storage area	113
23	Fences are maintained to prevent unplanned commingling animals with those from another operation.	113

24	Unhygienic areas around troughs feedbunks and water source.	114
25	Limit the contact of herd with animals from other	
	operations	115
26	Correlation between biosecurity measures, the percent of	
	isolation of <i>S. aureus</i> and the percent of mastitic animals in	117
	each farm.	

1. Introduction

Mastitis is a multietiologic disease of the mammary gland characterized mainly by reduction in milk production and milk quality due to intramammary infection by pathogenic bacteria (Harjanti et al., 2018). The economic losses from mastitis due to severe drop in milk production, potential health risks for other animals and human beings, increased cost of treatment and culling processes, are tremendous (Dhakal and Thapa, 2002). Moreover, bacterial agents that are involved in bovine mastitis may represent a health risk for the human population via the food chain (Kadariya et al., 2014).

Among the animal diseases which affect the profitability of rearing animals, mastitis is considered to be one of the expensive diseases in terms of production losses (Bardhan, 2013). The losses are the potential revenues not earned, while the control costs are actual expenditures related to treatments, preventive measures, and additional labour used by them (McInerney et al., 1992). The economic calculations of production losses and knowledge of the cost component are very essential in farmer's decision to develop control mechanism. Many studies have been conducted on preventive and microbial aspects of this disease as well as simulative form and few studies are based on data of the field farms to estimate production related losses and treatment costs (Hogeveen, 2005 and Selvaraju et al., 2013).

Staphylococci are very common human and animal pathogens. A variety of staphylococcal virulence determinates leads to vast range of infections. One of them is mastitis which is a common disease of the mammary glands. The incidence of this disease is widespread all over the world and depends on bacterial virulence and on prevention programs (**Lisowska-lysiak** *et al.*, **2018**).

Raw milk contaminated with *Staphylococcus aureus* at elevated temperatures can result in the production of staphylococcal enterotoxins, especially type A (*SEA*),

which is most frequently associated with food poisoning outbreaks (Sabike et al., 2014).

Biofilm production by the microorganisms is considered an important virulence factor responsible for adhesion of these microorganisms with living or non-living surfaces. *Staphylococcus aureus* isolates which produce biofilm lead to chronic mastitis in dairy animals. The ability of *S. aureus* to grow and produce *SEs* under a wide range of conditions is evident by the variety of foods that have been implicated in *Staphylococcus aureus* Food Poisoning (SFP) (**Rosengren** *et al.*, **2010**).

.

Pathogenesis of mastitis may be caused by extracellular toxins, enzymes and surface antigens (O'Riordan and Lee, 2004). Coagulase gene of *S. aureus* is considered an important virulence factor. Amplification of *S. aureus* coagulase gene (coa) has been recommended as an accurate method for identification of virulent strains of *S. aureus* (Morandi et al., 2010) Sequencing of the coagulase gene shows great diversity in *S. aureus* population (Costa et al., 2012). Information regarding the genetic diversity of Staphylococcus aureus isolated from mastitis in cow is available but such information regarding *S. aureus* from buffalo mastitis is limited (Firyal et al., 2009). Various studies described that bovine mastitis is caused by a wide variety of Staphylococcus aureus genotypes (Smith et al., 2005) and Staphylococcus aureus from mastitis represents a genetic heterogeneity (Fournier et al., 2008).

Milk is a good substrate for *S. aureus* growth, and milk and milk products have been the source of many SFP outbreaks (**Loncarevic** *et al.*, **2005**). Contamination with *S. aureus* may be attributed to occurrence of *S. aureus* in raw milk or handling during the manufacturing process.

Staphylococcus aureus is responsible for variety of infections in human and animals (Bartlett and Hulten, 2010; Gu et al., 2013) and treatments become more difficult due to its emerging strains. Biosafety is a discipline that focuses on the safe handling and containment of infectious microorganisms and hazardous biological materials. Recently, research on infectious pathogens has been on the rise due to the