



By

Ragab Abou Bakr Mahmoud Mohammed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Mechanical Power Engineering





By

Ragab Abou Bakr Mahmoud Mohammed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Mechanical Power Engineering

By

Ragab Abou Bakr Mahmoud Mohammed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Mechanical Power Engineering

Under the Supervision of

Prof. El Sayed Mahdi Moh. Ali
Professor of
Combustion and Heat Engines
Mechanical Power Engineering Department
Faculty of Engineering, Cairo University

Dr. Ahmed Abdelhafz Hassanein Assistant Professor Prof. Mohy Saad Mansour
Professor of
Combustion and Heat Engines
Mechanical Power Engineering Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

By

Ragab Abou Bakr Mahmoud Mohammed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Mechanical Power Engineering

| Approved by the Examining committee                                                                 |     |
|-----------------------------------------------------------------------------------------------------|-----|
| Prof. Dr. El Sayed Mahdi Moh. Ali, Thesis Main Advisor                                              |     |
| Prof. Dr. Mohy Saad Mansour, Advisor                                                                |     |
| Prof. Dr. Abdelhafez Hassanein Abdelhafez, Internal Examin                                          | ner |
| Prof. Dr. Saad El-Din Mohamed Habik, External Examiner Faculty of Engineering, Port-Said University |     |

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Engineer's Name: Ragab Abou Bakr Mahmoud Mohammed

**Date of Birth:** 16/03/1976 **Nationality:** Egyptian

**E-mail:** Eng\_ragab2003@yahoo.com **Phone:** +201280221117-+201017258675 **Address:** 15<sup>th</sup> of May City, Cairo, Egypt

Registration Date: / / 2011
Awarding Date: / /2018
Degree: Master of Science

**Department:** Mechanical Power Engineering Department



**Supervisors:** 

Prof. El Sayed Mahdi Moh. Ali Prof. Mohy Saad Mansour

Dr. Ahmed Abdelhafz Hassanein

**Examiners:** 

Prof. Dr. Saad El-Din Mohamed Habik (External examiner)
Prof. Dr. Abdelhafez Hassanein Abdelhafez
Prof. Dr. El Sayed Mahdi Moh. Ali (Thesis main advisor)
Prof. Dr. Mohy Saad Mansour (Thesis advisor)

#### **Title of Thesis:**

Performance of Two Stage Combustors Burning Natural Gas

#### **Kev Words:**

Combustion; Premixed mixture; partially premixed; Emissions, Stage combustion

#### **Summary:**

The current thesis aims to investigate the different parameters affecting the performance of two stage air combustors burning natural gas. The burner consists of two horizontal and concentric pipes which deliver fuel and primary air to the mixing zone. The fuel injected radially inside the primary air stream and then the mixture enters the primary zone combustion at the rich mixture condition. First of all, in the start stage of combustion, products of primary zone are mixed with a secondary air injected from fifteen holes distributed around the primary combustion zone to complete the combustion process. The aim of this process is to produce flames with low emissions. During the experiments, the maximum flow rates of fuel and air was adjusted to have control on the flame stability and extinction limits, The burner was tested to specify suitable mixing zone length. The measurements were carried out at various loads using seven primary air ratios at maximum fuel flow rate and total excess air.

### **ACKNOWLEDGMENTS**

I would like to thank my thesis advisor Prof .Dr: El Sayed Mahdi. The door to Prof. Mahdi s office was always open whenever I needed guidance or had a question regarding my research. He consistently steered me in the right direction whenever he thought I needed it.

I would also like to thank the experts who were involved in the validation of this thesis, Prof Dr.: Mohy Saad Mansour and Dr.: Ahmed Abdelhafez. Without their passionate participation and patient guidance, this thesis could not have been successfully conducted. I would also like to my gratitude for Eng. Mohamed Amin for his help in the experiments carried out in the combustion laboratory.

I would also like to thank the staff of the combustion laboratory for providing me with the help and provision of all the equipment used in the experiments.

# Dedication

Special thanks to my wife Hoda Ali and my children zeyad, Mazen and Hamza. Dedicate the thesis to my mother and to the spirit of my father.

# **Table of Contents**

| ACKNO' | WLEDGMENTS i                            |
|--------|-----------------------------------------|
| Dedic  | ationii                                 |
| Table  | of Contentsiii                          |
| List o | f tablesvi                              |
| List o | f figures vii                           |
| Nome   | enclature x                             |
| Acron  | nymxi                                   |
| Greek  | Symbolsxi                               |
| ABST   | TRACT xii                               |
| СНАРТ  | TER (1)                                 |
| INROI  | DUCTION1                                |
| 1.1    | Introduction                            |
| 1.2    | Stage combustions                       |
| 1.3    | Rich-burn, quick-lean combustors (RQL)2 |
| СНАРТ  | TER (2)4                                |
| REVIE  | EW OF PREVIOUS WORK4                    |
| 2.1    | Introduction4                           |
| 2.2    | Swirling combustion                     |
| 2.3    | Fuel injection strategy5                |
| 2.4    | Primary zone combustion                 |
| 2.4.1  | Primary air ratio6                      |
| 2.4.2  | The equivalence ratio                   |
| 2.4.3  | The residence time                      |
| 2.4.4  | Reynolds number7                        |
| 2.5    | Secondary combustion zone               |
| 2.6    | Flame stabilization8                    |
| 2.7    | Present work9                           |
| СНАРТ  | TER (3)                                 |
| TEST 1 | RIG AND INSTRUMENTATION11               |
| 3.1    | Test rig                                |
| 3.2    | Combustion chamber 11                   |