



## NUMERICAL SIMULATION OF IGNITION FLAME PROPAGATION OF GASEOUS HYDROGEN-AIR PROPELLANTS

### By

### **Omar Magdy Gamal ElDin ElBoughdady**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE in

**Aerospace Engineering** 

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

## NUMERICAL SIMULATION OF IGNITION FLAME PROPAGATION OF GASEOUS HYDROGEN-AIR **PROPELLANTS**

By

## **Omar Magdy Gamal ElDin Elboughdady**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

> **MASTER OF SCIENCE** in

**Aerospace Engineering** 

Under the Supervision of

**Prof. Farouk Mohamed Owis** Prof. Aly AbdelFatah Hashem

**Professor** Aerospace Engineering Department

**Professor** Aerospace Engineering Department Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

## NUMERICAL SIMULATION OF IGNITION FLAME PROPAGATION OF GASEOUS HYDROGEN-AIR PROPELLANTS

### By

### **Omar Magdy Gamal ElDin ElBoughdady**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

# MASTER OF SCIENCE in

#### **Aerospace Engineering**

Approved by the Examining Committee

Prof. Aly AbdelFatah Hashem, Thesis Main Advisor

Prof. Farouk Mohamed Owis, Advisor

Prof. Ibrahim Mohamed Shabaka, Internal Examiner

Prof. Ahmed Farouk Abdel Gawad, External Examiner, Mechanical Power Department, Faculty of Engineering, Zagazig University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2018

Engineer's Name: Omar Magdy Gamal

**Date of Birth** 26 / 11 / 1990

**Nationality:** Egyptian

E-mail: omarelboughdady@gmail.com

**Phone:** 01274544956

**Address:** 9 Dr. Hamuda st, Mashaal, AlHaram

**Registration Date:** 1 / 1 / 2015 **Awarding Date:** / / 2018

**Degree:** Master of Science

**Department:** Aerospace Engineering

**Supervisors:** 

Prof. Aly AbdelFatah Hashem Prof. Farouk Mohamed Owis

**Examiners:** 

Prof. Ahmed Farouk Abdel Gawad, External Examiner

Prof. Ibrahim Mohamed Shabaka, Internal Examiner
Prof. Aly AbdelFatah Hashem, Thesis Main Advisor

Prof. Farouk Mohamed Owis, Advisor

**Title of Thesis:** 

Numerical Simulation of Ignition Flame Propagation of Gaseous Hydrogen-Air Propellants

#### **Key Words:**

Ignition, Quenching, Flame Propagation, Chemical Kinetics, Combustion.

#### **Summary:**

Ignition is a fundamental process for combustors. Its success or failure depends on flow properties and mixture concentration. The existence of regime where the flow velocity is less than that of the flame has a decisive impact on flame stability. If the bulk of flow has high velocity, flame might be quenched or be swept by the flow. Quenching occurs when the heat released was less than the heat lost to the mixture. Eddies created by the injection pattern create vortices that aided the mixing of the fuel and oxidizer helped anchor the flame.



## Acknowledgments

A lot of people contributed with their support, advise, time, and encouragement in finishing this work. I would like to thank first my supervisors Prof. Dr. Aly A. Hashem and Prof. Dr. Farouk M. Owis, for their encouragement and guidance during my undergraduate and postgraduate studies even in my real life.Prof. Dr. Aly always provides me with his support, care and advice. Besides, I always remember the invaluable counsels and discussions of Prof. Dr. Owis in my undergraduate and postgraduate studies. I would like to express my honest gratitude to Professors Dr. Ibrahim Shabakah, Dr. Madboli, Dr. Nader, Dr. Gamal El-Bayoumi and Dr. Ahmed Rashed. Finally, my truthful acknowledgment was reserved for my father and mother, and for my sisters for their moral and emotional support in all my life, I would like to dedicate my work to them all.

## **Table of Contents**

| AC | KHUW    | eugments                                               | J     |
|----|---------|--------------------------------------------------------|-------|
| Ta | ble o   | Contents                                               | iii   |
| Li | st of ] | igures                                                 | vii   |
| Li | st of ' | ables                                                  | XV    |
| No | men     | ature                                                  | xvii  |
| Al | brev    | ations                                                 | XX    |
| Al | ostrac  |                                                        | xxiii |
| 1  | Intr    | duction and Literature Review                          | 1     |
|    | 1.1     | Introduction                                           | 1     |
|    | 1.2     | Literature Review                                      | 3     |
|    | 1.3     | Thesis Objective                                       | 4     |
|    | 1.4     | Thesis Organization                                    | 5     |
| 2  | Gov     | rning Equations                                        | 7     |
|    | 2.1     | Introduction                                           |       |
|    | 2.2     | Governing equations                                    |       |
|    |         | 2.2.1 The mass conservation equation                   | 7     |
|    |         | 2.2.2 The momentum conservation equation               |       |
|    |         | 2.2.3 The energy conservation equation                 |       |
|    |         | 2.2.4 The species transport equation                   |       |
|    |         | 2.2.5 Turbulence model and laminar physical properties |       |
|    |         | 2.2.5.1 Realizable $k - \epsilon$ turbulence model     |       |
|    |         | 2.2.5.2 Laminar physical properties                    |       |
|    |         | 2.2.6 Thermodynamics modeling                          |       |
|    |         | 2.2.7 Chemistry modeling and chemical kinetics         |       |
|    | 2.3     | The solver settings and schemes                        | 20    |
| 3  |         | Validation                                             | 21    |
|    | 3.1     | Turbulent Chemically Reacting Flows in a Ramped Duct   |       |
|    |         | 3.1.1 Introduction                                     |       |
|    |         | 3.1.2 Problem description and geometry                 |       |
|    |         | 3.1.3 Mesh                                             |       |
|    |         | 3.1.4 Results and discussion                           | 22    |
| 4  |         | Study                                                  | 35    |
|    | 4.1     | Introduction                                           | 35    |

| 4.3.1 |         | ynolds number, non-premixed, two-inlet pattern case with |
|-------|---------|----------------------------------------------------------|
| 4.5.1 |         | tate initial condition                                   |
|       | 4.3.1.1 | Problem description, geometry and boundary conditions    |
|       | 4.3.1.1 | Mesh                                                     |
|       |         |                                                          |
|       | 4.3.1.3 | The steady-state initial condition                       |
|       | 4.3.1.4 | The spark initiation and transient flame propagation     |
| 422   | 4.3.1.5 | The final steady-state                                   |
| 4.3.2 |         | ynolds number, non-premixed, two-inlet pattern case with |
|       | 4.3.2.1 | l condition.                                             |
|       |         | Problem description, geometry and boundary conditions    |
|       | 4.3.2.2 | Mesh, grid-independent solution and convergence criteria |
|       | 4.3.2.3 | The air initial condition case                           |
|       | 4.3.2.4 | The spark initiation and transient flame propagation     |
| 4.2.2 | 4.3.2.5 | The final steady-state                                   |
| 4.3.3 | _       | ynolds number, premixed, one inlet pattern case with air |
|       |         | ondition                                                 |
|       | 4.3.3.1 | Problem description, geometry and boundary conditions    |
|       | 4.3.3.2 | Mesh                                                     |
|       | 4.3.3.3 | The air initial condition case                           |
|       | 4.3.3.4 | The spark initiation and transient flame propagation     |
| 4.0.4 | 4.3.3.5 | The final steady-state                                   |
| 4.3.4 |         | e Reynolds number, non-premixed, two-inlet pattern case  |
|       |         | ady-state initial condition                              |
|       | 4.3.4.1 | Problem description, geometry and boundary conditions    |
|       | 4.3.4.2 | Mesh                                                     |
|       | 4.3.4.3 | The steady-state initial condition                       |
|       | 4.3.4.4 | The spark initiation and transient flame propagation     |
|       | 4.3.4.5 | The final steady-state                                   |
| 4.3.5 |         | e Reynolds number, non-premixed, two-inlet pattern case  |
|       |         | initial condition                                        |
|       | 4.3.5.1 | Problem description, geometry and boundary conditions    |
|       | 4.3.5.2 | Mesh, grid-independent solution and convergence criteria |
|       | 4.3.5.3 | The air initial condition case                           |
|       | 4.3.5.4 | The spark initiation and transient flame propagation     |
|       | 4.3.5.5 | The final steady-state                                   |
| 4.3.6 |         | e Reynolds number, premixed, one inlet pattern case with |
|       |         | l condition.                                             |
|       | 4.3.6.1 | Problem description, geometry and boundary conditions    |
|       | 4.3.6.2 | Mesh                                                     |
|       | 4.3.6.3 | The air initial condition case                           |
|       | 4.3.6.4 | The spark initiation and transient flame propagation     |
|       | 4.3.6.5 | The final steady-state                                   |
| 4.3.7 | •       | ynolds number, non-premixed, two-inlet pattern case with |
|       | •       | tate initial condition                                   |
|       | 4.3.7.1 | Problem description, geometry and boundary conditions    |
|       | 4.3.7.2 | Mesh                                                     |
|       | 4.3.7.3 | The steady-state initial condition case                  |
|       | 4.3.7.4 | The spark initiation and transient flame propagation     |

|    |        |                                | 4.3.7.5   | The final steady-state                                   | 119 |  |
|----|--------|--------------------------------|-----------|----------------------------------------------------------|-----|--|
|    |        | 4.3.8                          | Low Rey   | nolds number, non-premixed, two-inlet pattern case with  |     |  |
|    |        | steady-state initial condition |           |                                                          |     |  |
|    |        |                                | 4.3.8.1   | Problem description, geometry and boundary conditions    | 121 |  |
|    |        |                                | 4.3.8.2   | Mesh, grid-independent solution and convergence criteria | 121 |  |
|    |        |                                | 4.3.8.3   | The steady-state initial condition case                  | 127 |  |
|    |        |                                | 4.3.8.4   | The spark initiation and transient flame propagation     | 127 |  |
|    |        |                                | 4.3.8.5   | The final steady-state                                   | 148 |  |
|    |        | 4.3.9                          | Scale eff | ect and flow nature                                      | 150 |  |
|    | 4.4    | Discus                         | sion      |                                                          | 153 |  |
|    |        | 4.4.1                          | Failure r | easons                                                   | 153 |  |
|    |        |                                | 4.4.1.1   | Mixture composition                                      | 153 |  |
|    |        |                                | 4.4.1.2   | Flow speed (Swept flame)                                 | 153 |  |
|    |        |                                | 4.4.1.3   | Quenched flame (Extincted flame)                         | 154 |  |
|    |        |                                | 4.4.1.4   | No stabilization zone or was far away from the ignition  |     |  |
|    |        |                                |           | location                                                 |     |  |
|    |        |                                | 4.4.1.5   | Initial condition and ignition timing                    |     |  |
|    |        | 4.4.2                          |           | reasons                                                  | 155 |  |
|    |        |                                | 4.4.2.1   | First scenario                                           |     |  |
|    |        |                                | 4.4.2.2   | Second scenario                                          | 155 |  |
|    |        |                                | 4.4.2.3   | Third scenario                                           | 155 |  |
| 5  | Con    | clusion                        | and futu  | re work                                                  | 159 |  |
| Re | eferen | ices                           |           |                                                          | 161 |  |
| A  | The    | rmodyn                         | amic Pro  | operties for Species                                     | 163 |  |
| В  | Che    | mical K                        | inetics R | eaction Mechanism                                        |     |  |
| ۔  | ملخد   | ול                             |           |                                                          |     |  |

# **List of Figures**

| 1.1  | Diagrams illustrating the effect of turbulence energy $E(\kappa)$ distribution on flame shape and flame structure [1].                                                             | 2  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.2  | Flames under conditions of low and high turbulence (a) low turbulence intensity and (b) high turbulence intensity [1]                                                              | 3  |
| 3.1  | Schematic diagram of reacting supersonic flow case of premixed hydrogen air mixture in a two-dimensional ramped duct                                                               | 21 |
| 3.2  | Mesh (4466 cells) used to show the mesh distribution for the turbulent chemically reacting supersonic flow case of premixed hydrogen air mixture in a two-dimensional ramped duct. | 22 |
| 3.3  | Mesh 1 (18526 cells) used in solving the turbulent chemically reacting supersonic flow case of premixed hydrogen air mixture in a two-dimensional ramped duct                      | 22 |
| 3.4  | Mass fraction contours of Hydrogen $Y_{H_2}$ in case of turbulent reacting flow in a ramped duct                                                                                   | 23 |
| 3.5  | Mass fraction contours of Oxygen $Y_{O_2}$ in case of turbulent reacting flow in a ramped duct                                                                                     | 24 |
| 3.6  | Mass fraction contours of Water $Y_{H_2O}$ in case of turbulent reacting flow in a ramped duct                                                                                     | 24 |
| 3.7  | Mass fraction contours of Hydroxyl $Y_{OH}$ in case of turbulent reacting flow in a ramped duct                                                                                    | 25 |
| 3.8  | Mass fraction contours of Hydrogen atom $Y_H$ in case of turbulent reacting flow in a ramped duct                                                                                  | 25 |
| 3.9  | Mass fraction contours of Oxygen atom $Y_O$ in case of turbulent reacting flow in a ramped duct                                                                                    | 26 |
| 3.10 | Mass fraction contours of Hydroperoxyl $Y_{HO_2}$ in case of turbulent reacting flow in a ramped duct                                                                              | 26 |
| 3.11 | Mass fraction contours of Hydrogen peroxide $Y_{H_2O_2}$ in case of turbulent reacting flow in a ramped duct                                                                       | 27 |
| 3.12 | Absolute pressure contours in the case of turbulent reacting flow in a ramped duct                                                                                                 | 27 |
| 3.13 | Temperature contours in the case of turbulent reacting flow in a ramped duct                                                                                                       | 28 |
| 3.14 | Density contours in the case of turbulent reacting flow in a ramped duct                                                                                                           | 28 |
| 3.15 | Mach number contours in the case of turbulent reacting flow in a ramped duct                                                                                                       | 29 |
| 3.16 | The current solution compared to Yoon's solution [10] and Tiwari's solution [19] for $H_2$ mass fraction at 0.13 cm from the lower wall                                            | 30 |
| 3.17 | The current solution compared to Yoon's solution [10] and Tiwari's solution [19] for $O_2$ mass fraction at 0.13 cm from the lower wall                                            | 30 |
| 3.18 | The current solution compared to Yoon's solution [10] and Tiwari's solution [19] for $H_2O$ mass fraction at 0.13 cm from the lower wall                                           | 31 |
| 3.19 | The current solution compared to Yoon's solution [10] and Tiwari's solution [19] for $OH$ mass fraction at 0.13 cm from the lower wall                                             | 31 |