

عسام مقربى

تبيكة المعلومات الجامعية

بسم الله الرحمن الرحيم

عسام مغربى

شبكة المعلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

عسام مغربى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

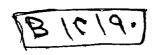
يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

New York of the Control of the Contr

عسام مغربى

شبكة المعلومات الجامعية


حسام مغربى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

QUALITY OF LAMINATED VENEER LUMBER (LVL) PRODUCED FROM TWO HARDWOODS AS AFFECTED BY VENEER THICKNESS AND NUMBER OF PLIES

Thesis

Presented to the Graduate School

Faculty of Agriculture, Alexandria University

In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Forestry and Wood Technology

By Gaber Refai EL-Sayed Kayad

3/2002

Advisors Committee:

Prof. Dr. O.A. Badran

Prof. of Forestry and Wood Technology, Faculty of Agriculture, Alexandria University.

Prof. Dr. M.M. Megahed

Prof. of Forestry and Wood Technology, Faculty of Agriculture, Alexandria University.

Dr. M.M. EL-Morshedy

Associate Prof. of Forestry and Wood Technology, Horticulture Research Institute Agriculture Research Center.

QUALITY OF LAMINATED VENEER LUMBER (LVL) PRODUCED FROM TWO HARDWOODS AS AFFECTED BY VENEER THICKNESS AND NUMBER OF PLIES

Presented by

Gaber Refai EL-Sayed Kayad

For the Degree of

DOCTOR OF PHILOSOPHY

In

Forestry and Wood Technology

Examiners' Committee

Prof. Dr. Mostafa E. Shehata

Prof. of Structural Engineering Faculty of Engineering Alexandria University

Prof. Dr. Hamed I. EL-Mousli

Prof. of Production Engineering, and
Head of Center for Development of
Small- Scale Industries and
Local Technologies
Faculty of Engineering
Ain-Shams University

Prof. Dr. Megahed M. Megahed

Prof. of Forestry and Wood Technology Faculty of Agriculture Alexandria University

Date: 4/3/2002

Approved

M.M. Megahal

ABSTRACT

This work was initiated to study the quality of laminated veneer lumber (LVL) produced from veneer of two hardwoods, namely, casuarina (*Casuarina glauca*) and poplar (*Populus sp.*) and their mixture, as affected by number of plies, veneer thickness and combination of different veneer thickness.

Veneer of three thickness 1,2 and 3 mm were prepared from each species. These veneer were used for producing LVL panels from one thickness, from mixture of two thickness (1 and 2 mm or 1 and 3 mm) and from the three thickness together. Commercial urea-formaldehyde (U.F) was used as adhesive by applying hot pressure of 12 kg/cm² at 100°C for 20 minutes.

Three combinations were made from veneer of homogenous thickness (1 or 2 or 3 mm veneer thickness). Three arrangements were made from mixing 1 and 2 mm and four arrangements from mixing 1 and 3 mm. Meanwhile, four arrangements were made from mixing 1,2 and 3 mm and one arrangement from mixing 2 and 3 mm veneer.

For this study, five panels were produced for each arrangement from each species and from their mixtures. The nominal dimensions of produced panels were 18 mm in thick by 300 mm for both width and length.

The mechanical properties of the panels were evaluated in flatwise bending properties (MOR_f,MOE_f), edgewise bending properties (MOR_c MOE_c), maximum crushing strength parallel to board axis (C_{max}) and gluing shear

strength (SH). In addition, water absorption (WA), thickness swelling (TS), compressibility ratio (COMP_{ratio}) and specific gravity (G) were determined.

A completely randomized design with five repetitions was used to estimate the role of each factor. The significant differences between the means of each studied parameter were determined depending on the least significant differences method (L.S.D $_{0.05}$).

The results indicated that veneer type (Species) significantly affects the mechanical and physical properties of LVL panels. Each species behaved differently according to the thickness and number of plies and methodology of mixing the different thickness for producing LVL panels.

LVL panels made from poplar veneer showed higher bending properties either in the flatwise or edgewise than LVL panels made from casuarina. The three LVL types exhibited weaker strength in edgewise bending (MOR_e) than in flatwise bending (MOR_f) and stiffer strength in edgewise bending (MOE_e) than in flatwise bending (MOE_f). The results indicated that variability in edgewise bending properties was less than variability in flatwise bending, except for modulus of elasticity of poplar LVL.

The results of the mechanical testing indicated that panels produced from homogenous veneer thickness with 1 mm were more suitable for casuarina LVL than panels made from 2 or 3 mm veneer thickness. However, poplar panels made from 2 or 3 mm veneer thickness were more suitable than panels made form 1 mm veneer thickness. The mixing between 1 and 3 mm veneer thickness mostly gave higher means than mixing between 1 and 2 mm veneer thickness.

The arrangements with high number of plies recorded higher mean values of mechanical properties than the arrangements of lower number of plies.

The results showed that casuarina LVL properties were affected by changes in number of plies and veneer thickness combinations, whereas poplar and mixed LVL were mostly affected by changes in number of plies than changes in veneer thickness combinations.

As for dimensional stability properties, results indicated that poplar LVL have higher mean values of water absorption (WA), thickness swelling (TS), compressibility ratio (COMP_{ratio}) than casuarina LVL, whereas casuarina LVL had higher specific gravity than poplar LVL. Moreover, it is obvious from the results of homogenous panels that WA and TS increase by increasing veneer thickness, while COMP _{ratio} and G decrease by increasing veneer thickness. The physical parameters studied were more sensitive to the changes in number of plies than changes in veneer thickness combinations. Also, mixing veneer of the two species in manufacturing LVL panels gave some improvement to WA and TS for the product than panels produced from poplar veneer only.

In general, the results showed that most mechanical properties and dimensional stability treatments are in range of these values in the available specifications.

From these results, it can be concluded that LVL can be produced in Egypt with proper properties by using veneer from timber alone or mixed with veneer waste of poplar.

TABLE OF CONTENTS

TITLE PAGE	
ABSTRACT	
TABLE OF CONTENTS.	
LIST OF TABLES	
LIST OF FIGURES.	
ACKNOWLEDGEMENT	
1- INTRODUCTION	
2- LITERATURE REVIEW	
2.1. Possibility of Producing Laminated Veneer	Lumber
(LVL) from Hardwoods	
2.2. Effect of Veneer Types on Properties of LVL	
2.2.1 Mechanical Properties	
2.2.1.1 Bending Strength	
2.2.1.2 Compression Strength	
2.2.1.3 Shear Strength	
2.2.2 Physical Properties	
2.2.2.1 Dimensional Stability	
2.2.2.2 Compressibility Test	
2.2.2.3 Specific Gravity	
2.3. Effect of Veneer Thickness and Number of Plie	es on the
Properties of LVL	
2.4. Effect of Mixing Different Veneer Types on Pr	operties
of LVL	
3. MATERIALS AND METHODS	
3.1 Raw Materials	
3.2 Veneer Preparation	
3.3 Manufacture of LVL Panels	
3.3.1 Veneer Arrangement and Gluing	
3.3.2 Pressing Process	
3.4 Preparation of Test Specimens	
3.5 Determination of LVL Properties	
3.5.1 Mechanical Properties	
3.5.1.1 Flatwise Bending Test	
3.5.1.2 Edgewise Bending Test	
3.5.1.3 Compression Test	
3.5.1.4 Gluing Shear Test	
3.5.1.5 Percentage of Wood Failure	

3.5.2 Physical Properties
3.5.2.1 Water Absorption
3.5.2.2 Thickness Swelling
3.5.2.3 Compressibility Ratio
3.5.2.4 Specific Gravity
3.6 Statistical Analysis
4- RESULTS AND DISCUSSION
4.1 Mechanical Properties of LVL
4.1.1 Effect of Veneer Type on Mechanical Properties of
LVL
4.1.1.1 Effect of Veneer Type on Flatwise Bending
Modulus of Rupture
4.1.1.2 Effect of Veneer Type on Flatwise Bending
Modulus of Elasticity
4.1.1.3 Effect of Veneer Type on Edgewise Bending
Modulus of Rupture
4.1.1.4 Effect of Veneer Type on Edgewise Bending
Modulus of Elasticity
4.1.1.5 Effect of Veneer Type on Maximum Crushing
Strength
4.1.1.6 Effect of Veneer Type on Shear Strength and
Percentage Wood Failure
4.1.2 Effect of Number of Plies on the Mechanical Properties
of LVL
4.1.2.1 Effect of Number of Plies on Flatwise Bending
Modulus of Rupture
4.1.2.2 Effect of Number of Plies on Flatwise Bending
Modulus of Elasticity
4.1.2.3 Effect of Number of Plies on Edgewise Bending
Modulus of Rupture
4.1.2.4 Effect of Number of Plies on Edgewise Bending
Modulus of Elasticity
4.1.2.5 Effect of Number of Plies on Maximum Crushing
Strength
4.1.2.6 Effect of Number of Plies on Shear Strength
4.1.3 Effect of Veneer Thickness Combination on the
Mechanical Properties of LVL
4.1.3.1 Effect of Veneer Thickness Combination on
Flatwise Bending Modulus of Rupture
4.1.3.2 Effect of Veneer Thickness Combination on
Flatwise Bending Modulus of Elasticity

4.1.3.3 Effect of Veneer Thickness Combination on
Edgewise Bending Modulus of Rupture
4.1.3.4 Effect of Veneer Thickness Combination on
Edgewise Bending Modulus of Elasticity
4.1.3.5 Effect of Veneer Thickness Combination on
Maximum Crushing Strength
4.1.3.6 Effect of Veneer Thickness Combination on Shear
Strength
4.2 Physical Properties
4.2.1 Effect of Veneer Type on Physical Properties of
LVL
4.2.1.1 Effect of Veneer Type on Water Absorption
4.2.1.2 Effect of Veneer Type on Thickness Swelling
4.2.1.3 Effect of Veneer Type on Compressibility Ratio
4.2.1.4 Effect of Veneer Type on Specific Gravity
4.2.2 Effect of Number of Plies on Physical Properties
4.2.2.1 Effect of Number of Plies on Water Absorption
4.2.2.2 Effect of Number of Plies on Thickness
Swelling
4.2.2.3 Effect of Number of Plies on Compressibility
Ratio
4.2.2.4 Effect of Number of Plies on Specific
Gravity
4.2.3 Effect of Veneer Thickness Combination on Physical
Properties
4.2.3.1 Effect of Veneer Thickness Combination on Water
Absorption
4.2.3.2 Effect of Veneer Thickness Combination on
Thickness Swelling
4.2.3.3 Effect of Veneer Thickness Combination on
Compressibility Ratio
4.2.3.4 Effect of Veneer Thickness Combination on
Specific Gravity
5- SUMMARY AND CONCLUSIONS
TITEDATIDE CITED

LIST OF TABLES

		Page
Table 1.	Shows the Distribution of Veneer with Different Thickness within LVL Panel.	115
Table 2.	The Analysis of Variance of Flatwise Bending Modulus of Rupture (MOR _f) and Flatwise Bending Modulus of Elasticity (MOE _f), Edgewise Bending Modulus of Rupture (MOR _e) and Edgewise Bending Modulus of Elasticity (MOE _e), Maximum Crushing Strength (C _{max}), Shear Strength (SH), Percentage of Wood Failure (P.W.F), Water Absorption (WA), Thickness Swelling (TS), Compressibility Ratio (COMP _{ratio}) and Specific gravity (G) for the Panels Used in This Study.	116
Table 3.	Mean Values of Flatwise Bending Modulus of Rupture (MOR _f) and Flatwise Bending Modulus of Elasticity (MOE _f), Edgewise Bending Modulus of Rupture (MOR _e) and Edgewise Bending Modulus of Elasticity (MOE _e), Maximum Crushing Strength (C _{max}), Shear Strength (SH), Percentage of Wood Failure (P.W.F), Water Absorption (WA), Thickness Swelling (TS), Compressibility Ratio (COMP _{ratio}) and Specific gravity (G) for the Three LVL	117
Table 4.	Types. Mean Values for the Three LVL Types of Flatwise Bending Modulus of Rupture (MOR _f) [kg/cm ²] for Veneer Thickness	117 118
Table 5.	Combination Groups. Mean Values for the Three LVL Types of Flatwise Bending Modulus of Elasticity (MOE ₁) [kg/cm ²] for Veneer Thickness	
Table 6.	Combination Groups. Mean Values for the Three LVL Types of Edgewise Bending Modulus of Rupture (MOR _e) [kg/cm ²] for Veneer Thickness	119
Table 7.	Combination Groups. Mean Values for the Three LVL Types of Edgewise Bending Modulus of Elasticity (MOE _e) [kg/cm ²] for Veneer	120
Table 8.	Thickness Combination Groups. Mean Values for the Three LVL Types of Maximum Crushing Strength (C _{max} kg/cm ²) for Veneer Thickness	121
Table 0	Combination Groups. Man Values for the Three LVI. Types of Sheer Strength.	122
Table 9.	Mean Values for the Three LVL Types of Shear Strength (SH kg/cm ²) for Veneer Thickness Combination Groups.	123