

## Cairo University Faculty of Veterinary Medicine



## Trials for production of different types of Salmonella Typhimurium vaccine

A Thesis Presented By

#### **Gehad Adel Mohamed Ismail**

B.V.Sc., Faculty of Veterinary Medicine, Cairo University (2006) M.V.Sc., Faculty of Veterinary Medicine, Cairo University (2011)

#### For the PhD. Degree of

Veterinary Medical Science, Microbiology (Bacteriology, Immunology and Mycology)

### **Under Supervision of**

#### Prof. Dr. Nashwa Abd El-Salam Ezz El-Deen

Professor of Microbiology
Faculty of Veterinary Medicine,
Cairo University

#### Dr. Mahmoud EL- Hariri

Assistant Professor of Microbiology Faculty of Veterinary Medicine, Cairo University

### Dr. Nasser Abbas Y. Sherif

Chief Researcher, Head of Evaluation of Live Poultry
Vaccine Dept.
Central Laboratory for Evaluation of Veterinary
Biologics, Abbasia, Cairo

2018

#### **Supervision Sheet**

### Trials for production of different types of Salmonella Typhimurium vaccine

A Thesis Presented By

#### Gehad Adel Mohamed Ismail

B.V.Sc., Faculty of Veterinary Medicine, Cairo University (2006) M.V.Sc., Faculty of Veterinary Medicine, Cairo University (2011)

# For the PhD. Degree of Veterinary Medical Science Microbiology

(Bacteriology, Immunology and Mycology)

**Supervision Committee** 

#### Prof. Dr. Nashwa Abd El-Salam Ezz El-Deen

Professor of Microbiology Faculty of Veterinary Medicine, Cairo University

#### Dr. Mahmoud EL- Hariri

Assistant Professor of Microbiology Faculty of Veterinary Medicine, Cairo University

#### Dr. Nasser Abbas Y. Sherif

Chief Researcher, Head of Evaluation of Live Poultry Vaccine Dept. Central Laboratory for Evaluation of Veterinary Biologics, Abbasia, Cairo

2018

To the light of my life
My mother,
My husband
Hamza

Hamza

Hlla

### <u>Acknowledgement</u>

Firstly it is a pleasure to express my deepest prayerful thanks to "ALLAH" who gave me everything I have and gave me the ability to finish this work.

I would like to take this opportunity to express my cardinal gratitude and deepest thanks to Prof. Dr. Nashwa Abd El- Salam Ezz Eldeen, Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University for her Kind supervision, stimulating suggestion, valuable help, and encouragement during this work.

I am thanking greatly Dr. Mahmoud El- Hareri Assistant Professor of Microbiology, Faculty of Veterinary Medicine. Cairo University for his help and support through this work.

No word can express my high appreciation, deep gratitude and sincere thanks to Dr. Nasser Abbas Sherif, Chief Researcher, Evaluation of Live Poultry Vaccine Dept. Central Laboratory for Evaluation of Veterinary Biologics, Abbasia, Cairo. For his valuable supervision, ideal guidance, constructive criticism and continued encouragement throughout the course of this study.

I am thanking greatly Dr. Medhat Sadek, Chief Researcher, Sera and Antigens Department, Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo for his excellent help to accomplish this work.

And I want to thank my colleagues in the Central Laboratory for Evaluation of Veterinary Biologics, Abbasia, Cairo. For their help in the practical part Dr. Afaf Ahmed, Dr. Ghada El-Sadek, and Assem saad.

Finally, deep heart thanks to my mother, my sister and my husband for their help, encourage, motivation and prayer to pass all difficulties to terminate this work.

Name: Gehad Adel Mohamed Ismail

Degree: Philosophy Degree in Veterinary Medical Science

Department: Microbilolgy "Bacteriology, Immunology and Mycology"

Supervisors:

• Prof. Dr. Nashwa Abd El-Salam Ezz El-Deen

• Dr. Mahmoud EL- Hariri

Dr. Nasser Abbas Youssef Sherif

Thesis Title:

## "Trial for production of different types of Salmonella Typhimurium vaccines"

#### **Abstract**

The goal of this study is a trial to prepare different types of Salmonella Typhimurium vaccines "local isolate" (Formalized Inactivated, Gamma-Irradiated inactivated by three doses of radiation "3.5, 4.5 and 5.5 KGy" and Vector vaccines) and evaluate these prepared vaccines through performing quality control tests; purity, sterility and safety tests and assess their immunological efficacy in vaccinated birds, determination of the protection percentage, shedding of Salmonella Typhimurium in the intestinal content as well as the effect of these vaccines on internal organs (Liver, heart and spleen) as clearance test and finally estimation of the humoral immune response in vaccinated birds using ELISA and compare these findings with results of another imported living attenuated Salmonella Typhimurium vaccine. The obtained results showed that all the prepared vaccines are safe, pure and not contaminated with any extraneous contaminants. Challenge test after inoculation of the vaccinated different chicken groups with virulent Salmonella Typhimurium strain which revealed that the use of irradiated vaccines are the most effective and protective vaccines than other prepared vaccine. Shedding test revealed the use of irradiated vaccine (3.5 KGy) or vector one is more effective in reduction of cecal colonization than other types of the prepared vaccines. Clearance test classified the vaccinated groups into 3 categories; first one has the lowest value of reisolation which means the highest value of clearance represented by "4.5 KGy" irradiated vaccine group, followed by formalized, "3.5 KGy" irradiated, "5.5 KGy" irradiated and vector vaccines then finally the highest value of reisolation category is the living attenuated vaccine and control groups. Generally in could be concluded that "4.5 KGy" irradiated vaccine gave the best clearance value than other types of the prepared vaccines. Statistically, there is a significant difference between groups with special reference to group (4) (vaccinated with irradiated "4.5 KGy" inactivated Salmonella Typhimurium vaccine). Generally, although all the prepared Salmonella Typhimurium vaccines are proved to be safe, potent and protective but it could be concluded that the "4.5 KGy" irradiated inactivated Salmonella Typhimurium vaccine gave the best and highest values of the immunological parameters during assessment of the prepared vaccines through whole the length of the experiment and it could be used safely to immunize the chicken against infection with Salmonella Typhimurium.

# LIST OF CONTENTS

|                                                                        |       | Page |
|------------------------------------------------------------------------|-------|------|
| 1. INTRODUCTION                                                        |       | 1    |
| 2. REVIEW OF LITERATURE                                                | ••••• | 4    |
| 2.1. Salmonella Serovars                                               |       | 4    |
| 2.2. Salmonella infection                                              |       | 11   |
| 2.3. Public health concerns of Salmonella                              |       | 19   |
| 2.4. Salmonella virulence Genes                                        | ••••• | 22   |
| 2.5. Salmonella infection control                                      | ••••• | 25   |
| 2.6. Salmonella vaccines                                               | ••••• | 28   |
| 2.6.1. Live attenuated Salmonella vaccine                              | ••••• | 28   |
| 2.6.2. Inactivated vaccines:                                           | ••••• | 31   |
| 2.6.2.1. Formalized inactivated vaccine                                | ••••• | 31   |
| 2.6.2.2. Gamma irradiated vaccine                                      | ••••• | 34   |
| 2.6.3. Vector vaccines:                                                | ••••• | 37   |
| 2.7. Evaluation of humoral immune response against                     |       | 41   |
| Salmonella vaccine in chickens:                                        | ••••• | 41   |
| 2.7.1. By using ELISA:                                                 | ••••• | 41   |
| 2.8. Salmonella Bioassay (shedding):                                   | ••••• | 45   |
| 2.9. Reisolation of <i>Salmonella</i> post Challenge (clearance test): |       | 50   |

|    |                                                                |       | Page       |
|----|----------------------------------------------------------------|-------|------------|
|    | 2.10. Protection (Challenge):                                  |       | 52         |
| 3. | MATERIAL AND METHODS                                           | ••••• | 54         |
|    | 3.1. Materials                                                 |       | 54         |
|    | 3.1.1. Salmonella Typhimurium strain                           |       | 54         |
|    | 3.1.3. Materials used in preparation of Salmonella             |       |            |
|    | Typhimurium inactivated vaccines (Formalized and               |       | 56         |
|    | Irradiated vaccines):                                          |       |            |
|    | 3.1.3.1. Media used for cultivation of Salmonella strains      | ••••• | 56         |
|    | 3.1.3.2. Media used in total colony count test                 |       | 57         |
|    | 3.1.3.3. Inactivants                                           |       | 58         |
|    | 3.1.3.3.1. Formalin 37%                                        | ••••• | 58         |
|    | 3.1.3.3.2. Gamma radiation                                     |       | 58         |
|    | 3.1.3.4. Adjuvant                                              |       | 59         |
|    | 3.1.4. Materials used in preparation of the vector vaccine     |       | 59         |
|    | 3.1.4.1. Materials used for extraction of Salmonella DNA:      |       | 59         |
|    | 3.1.4.2. Materials used for agarose gel electrophoresis        |       | 59         |
|    | 3.1.4.3. Gel PCR DNA Fragments Extraction Kit                  |       | 61         |
|    | 3.1.4.4. Vector                                                |       | 62         |
|    | 3.1.4.5. Kit used for restriction and ligation of the gene and |       | <i>(</i> 2 |
|    | vector                                                         | ••••• | 62         |
|    | 3.1.4.6. Competent cell                                        |       | 63         |

## Lists

|                                                             |           | Pag |
|-------------------------------------------------------------|-----------|-----|
| 3.1.4.7. Alkaline lysis (for 10 Maxipreps)                  |           | 64  |
| 3.1.4.8. DNA sequencing                                     |           | 65  |
| 3.1.5. Material used in quality control of the vaccines     | • • • •   | 66  |
| 3.1.6. Experimental Design                                  |           | 68  |
| 3.1.7. Samples                                              |           | 69  |
| 3.1.8. Media used for shedding                              |           | 70  |
| 3.1.9. Materials used for ELISA                             |           | 70  |
| 3.1.10. Equipment and apparatus                             |           | 73  |
| 3.2. Methods                                                |           | 74  |
| 3.2.1. Preparation of inactivated S. Typhimurium vaccines   |           | 75  |
| (Formalized and Irradiated vaccines):                       | •••••     | 75  |
| 3.2.1.4. Inactivation of S. Typhimurium cultures with       |           | 70  |
| formalin                                                    | • • • •   | 76  |
| 3.2.1.5. Inactivation of S. Typhimurium with gamma          |           | 77  |
| radiation                                                   | •••••     | 77  |
| 3.2.1.6. Preparation of the gel adjuvant vaccine containing |           |     |
| the formalin or gamma inactivated S. Typhimurium            |           | 77  |
| suspension:                                                 |           |     |
| 3.2.2. Preparation of salmonella vector vaccine             |           | 77  |
| 3.2.2.1. Extraction of DNA according to EZ-10 Spin          |           | 70  |
| . Column Genomic DNA Minipreps Kit                          | • • • • • | 78  |

## Lists

|                                                                         |      | Page |
|-------------------------------------------------------------------------|------|------|
| 3.2.2.2.Purification of the gene from the electrophoresis gel as in the |      | 90   |
| manufacturer's instruction                                              | •••• | 80   |
| 3.2.2.3. cloning of <i>flic</i> gene                                    |      | 82   |
| 3.2.2.4. Analyze Positive Clones                                        |      | 83   |
| 3.2.2.5. Plasmid purification                                           |      | 84   |
| 3.2.2.6. Determination of the Plasmid DNA concentration                 |      | 87   |
| 3.2.3. Quality control on the prepared vaccine                          |      | 87   |
| 3.2.3.1. Test for purity                                                |      | 87   |
| 3.2.3.2. Sterility test                                                 |      | 87   |
| 3.2.3.4. Safety test                                                    |      | 88   |
| 3.2.3.5. Evaluation of the humoral immune response to Salmonella        |      | 90   |
| Typhimurium vaccine by using ELISA                                      |      | 89   |
| 3.2.3.8. Intestinal shedding                                            |      | 92   |
| 3.2.3.9. Challenge test against Salmonella Typhimurium                  |      | 92   |
| 4. RESULTS                                                              |      | 93   |
| 5. DISCUSSION                                                           |      | 118  |
| 6. SUMMARY                                                              |      | 133  |
| 7. REFERENCES                                                           |      | 137  |
| ARABIC SUMMARY                                                          |      |      |

# LIST OF TABLES

| Table | Title                                                                                                                                                                                                                                            | Page |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1     | Oligonucleotide primers sequences encoding for fliC gene                                                                                                                                                                                         | 60   |
| 2     | Experimental design                                                                                                                                                                                                                              | 68   |
| 3     | Cycling conditions of filC gene during PCR                                                                                                                                                                                                       | 75   |
| 4     | The biochemical characterization of <i>S</i> . Typhimurium strains using the API 20E plate system                                                                                                                                                | 94   |
| 5     | Protection against Salmonella Typhimurium of chicken groups vaccinated with different types of Salmonella Typhimurium prepared vaccines after challenge with virulent Salmonella Typhimurium strain                                              | 103  |
| 6     | Salmonella Typhimurium shedding from chicken groups vaccinated with different types of Salmonella Typhimurium prepared vaccines after challenge with virulent Salmonella Typhimurium strain                                                      | 106  |
| 7     | Clearance of Salmonella Typhimurium from organs, of vaccinated groups                                                                                                                                                                            | 109  |
| 8     | ELISA antibody titers of chickens vaccinated with the different types of salmonella Typhimurium vaccines, boosted with booster dose after 2 weeks of 1 <sup>st</sup> vaccination and then challenged with virulent Salmonella Typhimurium strain | 114  |
| 9     | Statistical analysis of the results using ANOVA TEST                                                                                                                                                                                             | 116  |

# LIST OF FIGURES

| Figure | Title                                                                                                                                                                                                                                            | Page |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | pCR 2.1- TOPO Vector                                                                                                                                                                                                                             | 62   |
| 2      | Gel electrophoresis of the amplified products of <i>S</i> .  Typhimurium flagellin ( <i>fliC</i> ) gene on (1%) agarose gel                                                                                                                      | 96   |
| 3      | Gel electrophoresis result of PCR for positive colonies                                                                                                                                                                                          | 97   |
| 4      | Result of orientation of the insert gene in the positive colonies by PCR                                                                                                                                                                         | 99   |
| 5      | Protection against Salmonella Typhimurium of chicken groups vaccinated with different types of Salmonella Typhimurium prepared vaccines after challenge with virulent Salmonella Typhimurium strain                                              | 104  |
| 6      | Salmonella Typhimurium shedding from chicken groups vaccinated with different types of Salmonella Typhimurium prepared vaccines after challenge with virulent Salmonella Typhimurium strain                                                      | 107  |
| 7      | Clearance of Salmonella Typhimurium from organs, of vaccinated groups                                                                                                                                                                            | 110  |
| 8      | ELISA antibody titers of chickens vaccinated with the different types of salmonella Typhimurium vaccines, boosted with booster dose after 2 weeks of 1 <sup>st</sup> vaccination and then challenged with virulent Salmonella Typhimurium strain | 115  |

# LIST OF ABBREVIATION

| (RT)-PCR | : | Real time PCR                              |
|----------|---|--------------------------------------------|
| +ve      | : | Positive                                   |
| μΙ       | : | Microlitre                                 |
| aadA2    | : | confers resistance to streptomycin         |
| AmR      | : | ampicillin resistant                       |
| APC      | : | Antigen Presenting Cell                    |
| blaTEM   | : | beta-lactamase TEM1                        |
| BPS      | : | Phosphate buffer saline                    |
| CDC      | : | Centers for Disease Control and Prevention |
| CFU      | : | Colony Forming Unit                        |
| DC       | : | Dendritic Cell                             |
| dfrA12   | : | dihydrofolate reductase type XII           |
| DNA      | : | Deoxyribonucleic Acid                      |
| ELISA    | : | Enzyme Linked Immunosorbent Assay          |
| fliC     | : | Full gene of flagellin                     |

| : | phase 2 flagellin                         |
|---|-------------------------------------------|
| : | Fumarate Nitrate Reduction                |
| : | Group                                     |
| : | Gastrointestinal Tract                    |
| : | integrated food chain surveillance system |
| : | invasion protein                          |
| : | Luria-Bertani Broth                       |
| : | Milli-litre                               |
| : | messenger Ribonucleic Acid                |
| : | Optical Density                           |
| : | Office International des Epizooties       |
| : | polymerase chain reaction                 |
| : | Pulsed-field gel electrophoresis          |
| : | Red Blood Cells                           |
| : | Rapid Slide agglutination Test            |
| : | Salmonella Enteritidis                    |
| : | Salmonella Typhimurium                    |
| : | Subcutaneous                              |
|   |                                           |

## Lists

| S/P   | : | Sample Positive ration            |
|-------|---|-----------------------------------|
| SG    | : | Salmonella Gallinarum             |
| SM    | : | Salmonella Montevideo             |
| SPF   | : | Specific Pathogen Free            |
| S-S   | : | Salmonella-Shigella               |
| tetA  | : | tetracycline resistance protein A |
| TLR 5 | : | Toll-like receptor 5              |
| WHO   | : | World Health Organization         |

### 1. INTRODUCTION

Worldwide, Salmonellosis is a serious medical and veterinary problem and raises great concern in the food industry. In the recent years, *Salmonella enterica* serovar Enteritidis has replaced serovar Typhimurium as the primary etiologic agent of *Salmonella* infections in many countries (**Rabsch** *et al.*, **2001**). A likely source of serovar Enteritidis is the consumption of infected poultry (**Cox**, **1995** and **Rabsch** *et al.*, **2001**).

Avian salmonellosis is an inclusive term designating a large group of acute and chronic diseases of poultry caused by any one or more member of genus *Salmonella*. However, particular *Salmonella* serovars may be encountered more frequently in one country than the other (Liljebjelke *et al.*, 2005). In Egypt several investigators (Shouman and Moustafa, 1972 and Mervat, 1995) have isolated many Salmonella species particularly, *S.* Typhimurium and *S.* Enteritidis from poultry.

Most human illnesses associated with the shell egg consumption are from *Salmonella* Enteritidis (SE). Several *Salmonella* serotypes have been isolated from egg products (Cook et al., 2004). *Salmonella* Enteritidis colonizes the tissues of the chicken ovary and oviduct, presumably contaminating eggs and thereby contributing to human outbreaks of salmonellosis. The bacteria *Salmonella* are Gram negative, straight rods not exceeding 1.5 micrometers in width. They are facultative anaerobes usually motile by peritrichous flagella (Mastroeni et al., 2001, Pawsey, 2002).