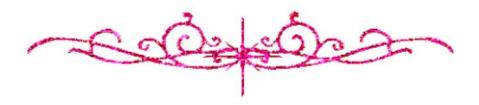


بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

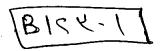
التوثيق الإلكتروني والميكروفيلم


قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار



بالرسالة صفحات لم ترد بالأصل

Enhancing The Behavior Of The Ant Algorithms In Solving Optimization Problems

By

Nadia Ibrahim Abdelsabour

A thesis submitted to the Department of Computer and Information Sciences,
Institute of Statistical Studies and Research, Cairo University,
in partial fulfillment of the M.Sc. Degree in Computer Science

Supervision

Prof. Dr. Atef M. A-Moneim

Dr. Hesham Ahmed Hefny

Cairo University Institute of Statistical Studies and Research Department of Computer and Information Sciences

Approval Sheet

Enhancing The Behavior Of The Ant Algorithms In Solving Optimization Problems

By

Nadia Ibrahim Abdelsabour

A thesis submitted to the Department of Computer and Information Sciences, Institute of Statistical Studies and Research, Cairo University, in partial fulfillment of the M. Sc. Degree in Computer Science.

This thesis has been approved by:

Name

Prof. Dr. Mahmoud Riad Mahmoud

Institute of Statistical Studies and Research

Prof. Dr. Atef M. A-Moneim

Institute of Statistical Studies and Research

Prof. Dr. Nevin Mahmoud Darwish

Faculty of Engineering

Signature

Mahore Reed Afet Moneill New Danvish

Abstract

In recent years, Swarm Intelligence, and in particular, Ant algorithms have received much attention among researchers as promising search and optimization techniques which are inspired from nature.

Ant algorithms depend essentially on the idea of synergistic use of cooperation among many relatively simple agents, which communicate by distributed memory. In such a research area, several approaches have been proposed to simulate the behavior of real ants. Among such approaches, Ant Colony System (ACS) comes as the most interesting one.

The aim of this thesis is to introduce two enhancements to Ant Colony System, which is considered one of the most successful ant algorithms used to solve combinatorial optimization problems. The thesis presents the results of 15 experiments, where the proposed algorithm is compared with the classical Ant Colony System in solving shortest path problems.

Experimental work show that the modified ACS algorithm outperforms the classical one in terms of reducing the number of tours needed to reach the optimum solution and increasing the ability of dealing with different instances of the shortest path problem.

Certification

I certify that this work has not been accepted in substance

for any academic degree and is not being concurrently

submitted in candidature for any other degree. Any portions of

this thesis for which I am indebted to sources are mentioned

and explicit references are given.

Student: Nadia Ibrahim Abdelsabour

Acknowledgment

At first, I pray and thank my God for his uncountable gifts to me, without his assistance I could not be able to do any thing.

I wish to express my deepest gratitude to **Prof. Dr. Atef M. A-Moneim** for his sincere supervision, help, and valuable remarks. Also, I wish to express my deepest thanks to **Dr. Hesham Hefny**, for his support, encouragement, and valuable comments. I would like to thank **Prof. Dr. Mervat Ghieth**, the head of Computer Science department.

I would like to thank Prof. Dr. Dorigo and Dr. Christine who helped me a lot.

Nadia Ibrahim

Table of Contents

1-1 Introduction	1
1-2 Combinatorial Optimization problems	2
1-3 Genetic Algorithms	3
1-3-1 The Basic Genetic Algorithms Operators	5
1-3-1-1 The Selection Operator	5
1-3-1-2 The Crossover Operator	5 5 5
1-3-1-3 The Mutation Operator	5
1-3-2 The Fundamental Algorithm	6
1-3-3 Some Applications of Genetic Algorithms	6
1-3-3-1 Optimization	. 6
1-3-3-2 Machine Learning	-6
1-3-3-3 Economics	7
1-3-3-4 Population Genetics	7
1-3-3-5 Evolution and Learning	7
1-3-3-6 Social Systems	7
1-3-3-7 Image Processing	7
1-3-3-8 Automatic Programming	7
1-4 Simulated Annealing	8
1-4-1 The Fundamental Simulated Annealing Algorithm	9
1-4-2 Some Applications of Simulated Annealing	10
1-5 Neural Networks	11
1-5-1 Different types of ANNs	12
1-5-2 Advantages of ANNs	13
1-5-3 Drawbacks of ANNs	13
1-5-4 Some Applications of Neural Networks	14
1-6 Tabu Search	15
1-6-1 The Fundamental Algorithm of Tabu Search	16
1-6-2 Some Applications of Tabu Search	17
1-7 Sampling & Clustering	17
1-8 Conclusion	17

Chapter 2 An Overview of Shortest Path Problems

2-1 Introduction		18
2-2 Types of Shortest Path Problem		19
2-3 Unconstrained Paths		19
 2-3-1 Shortest path between two specific nodes 2-3-1-1 Dijkstra's algorithm 2-3-1-2 Ford's algorithm 2-3-2 Shortest path from one node to all other nodes 2-3-2-1 Thresh-s Algorithm 2-3-3 Shortest path between all pairs of nodes 2-3-3-1 Floyd's algorithm 2-3-4 The K th shortest path 2-3-4-1 Martin algorithm 		19 20 24 25 26 28 28 32 32
2-4 Constrained Shortest Path Problems	•	33
2-5 Some Applications of Shortest Path Problem		34
2-6 Conclusion		34
Chapter 3 An Overview Of Ant Algorithms		
3-1 Introduction		35
3-2 Swarm Intelligence 3-2-1 Some Applications Of Swarm Intelligence		35 37
3-3 Real Ant behavior		37
3-4 Artificial Ants	• • • • • • • • • • • • • • • • • • •	38
3-5 Ant Algorithms		41
3-6 Ant Colony Optimization (ACO)	· · · · · · · · · · · · · · · · · · ·	42
3-6-1 The Basic ACO Algorithm		43
3-7 Ant System (AS) 3-7-1 Ant Cycle (Ant System) 3-7-1-1 Tour Construction 3-7-1-2 Pheromone Update 3-7-1-3 The Basic Ant System Algorithm 3-7-2 Ant Density 3-7-3 Ant Quantity 3-7-4 Comparison with General-Purpose Heuristics		44 45 45 46 47 48 49

3-8 Ant Colony System	50
3-8-1 Tour Construction	50
3-8-2 Global Pheromone Trail Update	51
3-8-3 Local Pheromone Trail Update	51
3-8-4 The Basic ACS Algorithm	52
3-8-5 Comparison with other heuristics	53
3-9 MAX-MIN Ant System	. 55
3-9-1 Update Of Pheromone Trails	55
3-9-2 Trail Limits	55
3-9-3 Trail Initialization	56
3-9-4 The Basic MMAS Algorithm	. 56
3-10 Some Applications of ACO Algorithms	57
3-10-1 The Traveling Salesman Problem (TSP)	57
3-10-2 The Quadratic Assignment Problem (QAP)	58
3-10-3 The Job-Shop Scheduling Problem (JSSP)	58
3-10-4 The Shortest Common Supersequence Problem (SCSP)	58
3-10-5 The Sequential Ordering Problem (SOP)	59
3-10-6 The Graph Coloring Problem (GCP)	59
3-10-7 The Vehicle Routing Problem (VRP)	59
3-10-8 The Constraint Satisfaction Problems (CSPs)	60
3-11 Conclusions	60
Chapter 4 The proposed Ant Colony System Algorithm	
4-1 Introduction	61
4-2 The Previous Directions For Enhancing AAs	61
4-3 The Proposed Enhancement Techniques to ACS Algorithm	62
4-3-1 The Basic ACS_Exp_Elitist Algorithm	64
Chapter 5 Tests and Results	
5-1 Introduction	65
5-2 Experiment 1	66
5-3 Experiment 2	67
5-4 Experiment 3	68
5-5 Experiment 4	69
5-6 Experiment 5	70
5-7 Experiment 6	71
5-8 Experiment 7	72
5-9 Experiment 8	72

5-10 Experiment 9	74
5-11 Experiment 10	75
5-12 Experiment 11	. 76
5-13 Experiment 12	77
5-14 Experiment 13	78
5-15 Experiment 14	79
5-16 Experiment 15	80
Chapter 6 Discussions and Conclusion	81
References	85
Appendix A List of Abbreviations	90

Chapter 1

An Overview Of Heuristic Techniques Inspired From Nature