سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

Role of Color Doppler Ultrasound In Diagnosis Of Ovarian Masses

Essay
Submitted in partial fulfillment for the master
Degree in obstetric & Gynaecology

By

Rania Saleh El-Said Mohamed (M.B.B.CH.)

Supervisors

Prof. Dr. Hazem Ismail

Prof. of Obstetrics & Gynaccology Faculty of Medicine - Benha University

Prof. Dr. Nabil El-Oraby

Prof. of Obstetrics & Gynaecology Faculty of Medicine – Benha University Dr. Emad Abd El-Mageed

Associate Prof. of Obstetrics & Gynaecology Faculty of Medicine - Benha University

Faculty of Medicine – Banha University

2006

BYCCKI

بتنتم الله الرحمن الرحيم

الْمُدُّ الْمُلِدُ الْمُلْدُ اللّهِ اللّهُ الللّهُ الللللّهُ الللللّهُ اللللّهُ الللللّهُ الللللّهُ اللللللّهُ الللللّهُ اللللللللّهُ الللللل

البقرة -- 32

ACKNOWLEDGEMENT

First and fore most thanks are due to **ALLAH** the beneficent and merciful of all.

I am greatly indebted and grateful to *Prof. Dr. Hazem Ismail Prof.* of *Obstetrics & Gynaecology*, Faculty of Medicine, Benha University for his continuous encouragement to bring this work to the attempted goal.

I would like to express my deep gratitude and appreciation to *Prof.*Dr. Nabil El-Oraby, Prof. of Obstetrics & Gynaecology, Faculty of Medicine, Benha University for his continuous help and unlimited support.

This work wouldn't come to light without the help and guidance of **Dr. Emad Abd El-Mageed**, Associate Prof. of Obstetrics & Gynaecology, Faculty of Medicine, Benha University.

Rania Saleh El-Said Mohamed

ABBREVIATIONS

ARF	acute renal failure
ATN	acute tubular necrosis
CA125	Cancer Antigen 125
CCD	conventional color Doppler
CDI	Color Doppler imaging
CD\$	Color Doppler sonsography
CT	Computerized tomography
CW	Continuous wave
3DPD	3-dimensional power-Doppler
5-DFUR	Ś-deoxy-5-fluorouridine
D/A ratio	Diastolic to average
5-FDUMP	5-fluoro-2-deoxyuridine 5- monophosphate
5-FU	5-fluorouracil
FSH	Follicle stimulating hormone
GCT	Granulosa cell tumor
HRS	Hepatorenal syndrome
HUS	Hemolytic-uremic syndrome
ICC	Intraclass correlation coefficients
LH	Lutinizing hormone
MEDV	Maximum end diastolic velocity

MRI	Magnetic resonance imaging
PCOS	Polycystic ovary syndrome
PD-ECGF	platelet-derived endothelial cell growth factor
PDI	Power Doppler index
PI	Pulsatility index
PN	Panarteritis nodose
PSV	Peak systolic velocity
ROI	Region of interest
R1	Resistance index
SMS	Sonographic morphology scores
TAF	Tumor angiogenesis factor
TAMXV	Time average maximum velocities
TP	Thymidine phosphorylase
TŞ	Turner syndrome
TTP	Thrombocytopenic purpura
TVS	Transvaginal sonography
VEGF	Vascular endothelial growth factor

₹

البهائعار

í

FIGURES

Figure	Title	р
1	Simple ovarian cyst shows peripheral blood flow	74
2	Follicular cyst containing cluster of peripheral vessels.	75
3	Hemorrhagic corpus luteum containing no flow within the solid area	75
4	Twisted pedicle sign of adnexal torsion	80
5	Transvaginal color Doppler imaging of the solid ovarian tumor	82
6	Transvaginal ultrasound imaging with color Doppler demonstrating a right ovarian echogenic mass	√83
7	Transvaginal color Doppler showing low vascular resistance indicative of benign lesion	86
8	Color Doppler imaging with pulsed Doppler spectral analysis of ovarian cancer	86

9	Serous cystadenoma with focal wall thickening but no increased vascularity	93
10	Serous cystadenoma of the ovary	94
11	Gray-scale (a) and color Doppler (b) ultrasound features of a serous borderline ovarian tumor (SBOT)	95
12	Mucinous cystadenoma of the ovary	96
13	Color Doppler ultrasound features of an intestinal-type mucinous borderline ovarian tumor (MBOT)	97
14	Color Doppler ultrasound features of an endocervical- type mucinous borderline ovarian tumor (MBOT)	97
15	Transvaginal color Doppler sonograms of primary ovarian cancer	98

CONTENTS

INTRODUCTION	
AIM OF WORK	6
REVIEW OF LITERATURE	
Ovarian Tumors and Swellings	7
Diagnosis of ovarian tumors and its limitation	22
Doppler ultrasound	35
The Doppler principle	36
Diagnostic Doppler techniques	44
Clinical applications of color Doppler	62
 Color Doppler ultrasound in ovarian masses 	
Diagnostic features of certain ovarian masses by CDS	71
Distinguishing benign from malignant ovarian tumors	84
Three dimensional power Doppler vascular sampling	111
Power Doppler vascularity index for predicting malignancy in adenexal masses	120
SUMMARY & CONCLUSIONS	126
REFERENCES	129
ARABIC SUMMARY	

INTRODUCTION

Transvaginal imaging is achieved with greater resolution and allow closer proximity to the uterus, ovaries and pelvic vessels compared with transabdominal methods. More information can be obtained by using Doppler ultrasound than could previously be gained only by morphological study. Color Doppler indicates direction, velocity and type of blood flow where as pulsed Doppler enables quantification of such flow. However, the combination of high quality B-mode images, pulsed Doppler and color coded Doppler flow imaging in the same vaginal probe produces a super simultaneous picture of morphological and blood flow information from female pelvic circulation (Kurjak, and Zalud, 1991).

Doppler waveform analysis of ovarian tumor blood flow by transvaginal ultrasonography may help to differentiate malignant from benign tumors of the ovary. In young patients presenting with a solid adnexal mass, intratumoral Doppler waveform investigation might offer some help for earlier prediction of rare malignant tumors like fibrosarcomas (Williams et al., 1992).

During the reproductive years, most ovarian masses are benign.

About two thirds of ovarian tumors are encountered during reproductive age. In terms of assessing ovarian masses by pelvic

examination, masses that are unilateral, cystic, mobile and smooth are most likely to be benign whereas, those that are bilateral, solid fixed, irregular, and associated with ascites, culde-sac nodules, and rapid rate of growth are more likely to be malignant (Hillard, 1996).

The use of reproducible sonomorphologic criteria in premenopausal women with ovarian cysts proved to be efficient to reduce number of unnecessary operations and to evaluate risk of malignancy (Osmers et al., 1996). Malignant ovarian tumors, present a serious problem in terms of both detection and management and so, it is necessary to have a better understanding of the biology of the disease. Unfortunately, the pre-cancerous lesion of the ovary is not defined yet (Kurjak, 1991)

The early diagnosis of malignat ovarian tumors is a matter of chance rather than a scientific method. Also the methods of early diagnosis are extremely limited. A cancerous tumor lcc in size contains about one billion cells, each potentially capable of originating a new focus of cancer. This capacity of cancer cells to grow and disseminate makes early diagnosis so important (*Barber*, 1984).

Consequently, methods that improve the early detection of malignant ovarian neoplasms should have a profound effect on the mortality of the disease. It has been estimated that the 20% of malignant ovarian neoplasm cases that are currently detected as stage I