

Control of mycotoxin using nanopolymers prepared from natural sources

THESIS

Submitted For Partial Fulfillment Of The Requirements

For

The Doctor of Philosophy Degree in Science (Chemistry)

To

Department of Chemistry
Faculty of Science
Ain Shams University

By

Zeinab Khaled Saad Hamza M.Sc. Science in Organic Chemistry (2013).

(2018)

Control of mycotoxin using nanopolymers prepared from natural sources

A thesis Submitted For The Doctor of Philosophy Degree in Science (Chemistry)

Presented by

Zeinab Khaled Saad Hamza

M.Sc. Science in Organic Chemistry (2013).

Supervisied by

Prof. Maher A. El-Hashash

Prof. of organic Chemistry (**D.Sc.**) Chemistry Department Ain Shams University

Prof. Soher El-Sayed Aly Prof. Amal Shawky Hathout Prof. Ass. Bassem Ahmed Sabry

Food Toxicology and Contaminantes Departement National Research Center

(2018)

بشمالة الخمالخي

﴿ وَقُلِ اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونَ وَسَتُرَدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالْمُؤْمِنُونَ وَسَتُرَدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالْمُؤْمِنُونَ وَسَتُرَدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالشَّهَادَةِ فَيُنْبَئِّكُم بِمَا كُنتُمْ تَعْمَلُونَ ﴾ وَالشَّهَادَةِ فَيُنْبَئِّكُم بِمَا كُنتُمْ تَعْمَلُونَ ﴾

[التوبة:١٠٥]

صدق الله العظيم

Acknowledgements

To the Almighty God "ALLAH" who has granted me all these graces to fulfill this work and who supported me and blessed me by his power and his mercy in all my life.

I specially wish to express my sincere thanks and gratitude to my outstanding supervisor, **Prof. Maher A. El-Hashash** for his kind supervision, encouragement, technical and professional guidance, fruitful discussions, constructive advises.

I am deeply indebted to **Prof. Soher El-Sayed Aly** for her sincere supervision, suggesting the subject of the thesis and his effort provided during conducting this work. Great thanks are also to **Prof. Amal Shawky** for her valuable help, encouragement, plentiful advice and cooperation during this work. I would like gratefully to express and deep thanks **to Prof. Ass. Bassem Sabry**, for his continued assistance

I owe a deep sense of gratitude to **Prof. Gary Ostroff, PhD,** for allowing me to work in his lab at UMass Medical School, providing guidance throughout the project and his keen interest on me at every stage of my research. I would not have succeeded without the assistance and patience of him as well as the day-today guidance and advice he gave throughout the experimentation process. Gratitude is extended to **Ernesto Soto, Ph.D.** in teaching me all the lab techniques. Deep appreciation is extended to my colleagues of Ostroff lab, USA. Gratitude is extended to all the member of department Programme in molecular medicine, Umass Medical School.

My thanks for the financial support by the Egyptian Cultural and Educational Bureau, Washington DC, National Research Center and the Egyptian Government for giving me the grant for this study. Thanks

are due to the **University of Massachusetts Medical School** for cosupporting the project.

My special thanks for **beloved** family for their great care, good understanding and encouragement throughout my study.

ZEINAB, KH. HAMZA

Content

Content	Раде
Acknowledgment	I
List of figures	III
List of tables	VIII
Abbreviations	IX
Papers discussed	
Abstract	XII
Summary	XIV
I. Introduction	1
II. Review and Literature	5
Aim of the work	30
III. Material and methods	31
1. Chemicals and kits	31
2. Preparation and characterization of Glucan Mannan	32
Lipid Particles (GMLPs)	
3. The chemical composition of yeast wall	35
4. Development of an <i>in vitro</i> method to measure AFB ₁	35
binding	
4.1. Aflatoxin preparation	35

4.2. Gastrointestinal model preparation	36	
4.3. Incubation conditions for optimization the adsorption		
assay of AFB ₁ incubation conditions.		
4.4. Comparison of yeast cell wall-based particulate	37	
materials with different beta-glucan, mannan, lipid and		
chitin contents on AFB ₁ adsorption.		
4.5.The binding efficacy GMLP on AFB ₁ adsorption	37	
5. GMLP Microencapsulation of mycotoxin binding	37	
materials (payload) to enhance AFB ₁ binding.		
5.1. Polyvinylpyrollidone (PVP) as mycotoxin binder.	37	
5.1.1. Preparation PVP/Tannic acid nanoparticle	38	
complexation as a nanoparticulate payload (PVP-TA		
NPs).		
5.1.2. <i>In vitro</i> assessment of PVP/ TA complexed NPs as	38	
aflatoxin binders.		
5.1.3. Synthesis of fluorescent TA by using 5-(4, 6-	38	
dichlorotriazinyl) aminofluorescein (DTAF) as a trapping		
agent. 100 mg of tannic acid was dissolved in 10 mL		
5.1.4. Synthesis of PVPNPs inside GMLPs (GMLP	38	
PVP-NP formulation).		
5.1.5. Characterization of GMLP/ PVP and GMLP- PVP	40	
TA-NP formulations.		
5.1.6. AFB ₁ binding capacity of GMLP encapsulated	41	

42
42
43
43
44
44
45
45
45
46
46
47

(CR).	
5.4.2. Loading activated carbon onto GMLP /CR surface	47
6. Cytotoxicity assay of GMLP-HA and GMLP-HA-	48
AFB1 formulations.	
7. IN VIVO studies.	49
7.1. Experimental animals.	49
7.2. Experimental Design.	49
7.3. Serum biochemical assay.	50
7.4. Histopathological study.	51
8. Statistical analysis.	51
IV. Results and discussions	
1. Optimization of AFB ₁ adsorption assay	52
2. The effect of yeast cell wall composition on AFB ₁	53
adsorption	
3. The binding efficacy of GMLP on AFB ₁ adsorption	55
4. GMLP Microencapsulation of mycotoxin binding	56
materials to enhance AFB ₁ binding	
4.1. Polyvinylpyrollidone (PVP)	57
4.1.1. PVP/TA NPs as a nano-particulate payload (PVP-	57
TA NPs)	
4.1.2. GMLP encapsulated PVP/TA NPs as a	59
nanoparticulate payload (GMLP/ PVP-TA NPs).	

4.1.3. AFB1-binding properties of free and encapsulated	64
(PVP 360KD-TA NPs)	
4.1.4. AFB1-binding properties of free and encapsulated	66
(PVP 1300KD-TA NPs)	
4.2. Humic acid (HA)	70
4.2.1. Characterization of aflatoxin-binding properties of	73
unencapsulated free HA and HA complexes nanoparticles	
(NPs)	
4.2.2. GMLP encapsulated HA NPs (GMLP HA-NPs)	74
4.2.3. AFB ₁ binding capacity of GMLP encapsulated HA	77
complexed NPs.	
4.3. Nanaodiamond (ND)	80
4.3.1. Nano-diamond particles Dispersion (ND	80
4.3.2. GMLP encapsulated ND-PEI complexed NPs	80
(GMLP/ND-PEI).	
4.3.3. AFB ₁ binding capacity of GMLP encapsulated ND.	83
II. Incorporation large NPs (MB complexes) onto GMLPs	85
Surface	
4.4. Super Activated Porous Carbon NPs (carbon	
nanopowder) as mycotoxin sequestering agent.	
	0.5
4.4. 1. Saturated GMLP cell wall with Congo red dye	85
4.4. 1. Saturated GMLP cell wall with Congo red dye (CR).	85

CONTENT

GMLP).	
4.4.3. AFB ₁ binding capacity of GMLP/CR-NC	
5. In vitro cytotoxicity of GMLP HA-NP-AFB ₁	90
complexes	
II. IN VIVO studies	93
a. Body weight and food intake	
b. Serum biochemical parameters	
c. Histopathological Examination	
1. The histological examination of the liver	
2. The histological examination of the kidney	
V. References	
Arabic Summary	

List of figures

Figure	Title	Page
Figure 1	Chemical structure of the most common aflatoxins	9
Figure 2	Aflatoxin B ₁ metabolism in liver	10
Figure 3	Poly vinyl pyrrolidone (PVP) structure	
Figure 4	Example of a typical humic acid, having a variety of components including quinone, phenol, catechol and sugar moieties.	23
Figure 5	Schematic representation showing the different types of glucan particles	32
Figure 6	Production of Glucan Mannan Lipid Particles	33
Figure 7	a) Sealing of a small pipette tip (1–20 μL) with a Bunsen burner, (b) sealed pipette tip for mixing of GMLP samples, (c) image of a mixing stick device, and (d) mixing of GMLP samples and solution into a thick paste using the mixing device inserted into the sealed pipette tip.	40
Figure 8	High content imaging was acquired from Image Xpress Micro (on the left). Fluorescent photomicrographs were captured by Axiovert 200 M (on the right).	41
Figure 9	AFB ₁ degradation in SGF and SIF.	55
Figure 10	The calibration curve of AFB ₁ in SGF after 10 min and SIF after 1h using HPLC. The values are expressed as mean (± standard deviation)	56
Figure 11	The absorption efficacy of AFB ₁ by different yeast cell wall particulate materials in SGF after 10 min and in SIF after 1h.	57
Figure 12	The binding of AFB ₁ by GMLP in SGF after 10 min and in SIF after 1h.	58
Figure 13	The mass ratio required to achieve efficient complexation of 1 mg TA using (DMwt of PVP 10, 360 and 1300 kDa), the concentration of the former complex depends on the turbidity values at 600nm.	
Figure 14	Schematic representation of PVP (10, 360 and	62