

Mechanical Properties of Electrospun Cellulose Acetate/Graphene Oxide Composite Nanofibers and Its Effectiveness For Removing Organic Dyes

By

Eng. Nada Mohamed Ibrahim Abd-Elmotaleb

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

Mechanical Properties of Electrospun Cellulose Acetate/Graphene Oxide Composite Nanofibers and Its Effectiveness For Removing Organic Dyes

By

Eng. Nada Mohamed Ibrahim Abd-Elmotaleb

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

Under the Supervision of

Prof. Dr. Tarek Abdel Sadek
Osman

Professor of Machine Design
Mechanical Design And Production
Faculty of Engineering, Cairo University

Prof. Dr. Aly Ahmed Mostafa
Khattab

Professor of Machine Design
Mechanical Design And Production
Faculty of Engineering, Cairo University

Dr. Alaa El-Din Mohamed Abd El-Hamid Aly

Assistant Professor of Machine Design Production Engineering and Printing Technology Faculty of Engineering, Akhbar El-Yom Academy

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Mechanical Properties of Electrospun Cellulose Acetate/Graphene Oxide Composite Nanofibers and Its Effectiveness For Removing Organic Dyes

By

Eng. Nada Mohamed Ibrahim Abd-Elmotaleb

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

Approved by the Examining Committee	
Prof. Dr. Tarek Abdel Sadek Osman	Thesis Main Advisor
Prof. Dr. Mohamed Alaa El-Din Radwan	Internal Examiner
Prof. Dr. Wahid Yossery Aly	External Examiner

Professor of Machine Design, Faculty of Engineering, El Minia University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Nada Mohamed Ibrahim Abd El-Motaleb

Date of Birth: 1/1/1991 **Nationality:** Egyptian

E-mail: nadaaboamera@yahoo.com

Phone: 01015789180

Address: 7 El Tahrir St., Queisna, Elmonofya Egypt

Registration Date: 1/10/2012 **Awarding Date:** 2018

Degree: Master of Science

Department: Mechanical design and production Engineering

Supervisors:

Prof. Dr. Tarek Abdel Sadek Osman Prof. Dr. Aly Ahmed Mostafa Khattab

Dr. Alaa El-Din Mohamed Abd El-Hamid

(Assistant Professor of Machine Design, Faculty of Engineering,

Akhbar El-Yom Academy)

Examiners: Porf. Dr. Tarek Abdel Sadek Osman (Thesis main advisor)

Prof. Dr. Mohamed Alaa El-Din Radwan (Internal examiner)
Prof. Dr. Wahid Yossery Aly (External examiner)

(Professor of Machine Design, Faculty of Engineering, El Minia

University)

Title of Thesis:

Mechanical Properties of Electrospun Cellulose Acetate/Graphene Oxide Composite Nanofibers and Its Effectiveness For Removing Organic Dyes

Key Words:

Graphene Oxide; Cellulose Acetate; Composite nanofibers; Mechanical properties; Electrospinning

Summary:

The thesis main objectives were studying mechanical properties of Graphene Oxide (GO) incorporated Cellulose Acetate (CA) composite nanofibers prepared via electrospinning technique and producing highly efficient photocatalyst based on composite nanofibers Graphene Oxide (GO), Cellulose Acetate (CA), and surface functionalized TiO₂-NH₂ nanoparticles was developed.

Acknowledgments

First, I would like to express my sincere gratitude to my advisor **Prof. Dr. Tarek Osman**, Professor of Mechanical Design and Production Department, Cairo University for his guidance, encouragement, moral support and affection through the course of my work.

I am particularity grateful to **Prof. Dr. Ali Khattab** for his encouragement and valuable discussions which have been inspirational throughout the work.

I would like to express my very great appreciation to **Dr. Alaa Mohamed** for his valuable and constructive suggestions during the planning and development of this research work. His willingness to give his time so generously has been very much appreciated.

This work could have been a distant dream if I did not get the moral encouragement and help of my family; they equally shared my success and failures with me.

Finally, I wish to acknowledge and express my deep gratitude to all those who helped me in presenting this work.

Table of Contents

Acknowl	edgments	i
Table of	Contents	ii
List of Ta	ables	v
List of Fi	gures	vi
Abbrevia	tions	viii
Dedication	on	ix
Abstract		x
Chapter	1 Photocatalytic Degradation of Organic Pollutants in water	1
1.1.	Introduction and Objective	1
1.2.	Role of Photocatalytic Nanocomposite in Wastewater Treatment	
1.2.1.	Photocatalytic Activity	4
1.2.2.	Photocatalytic Property of Titanium Dioxide	5
1.2.3.	Factors influencing the photocatalytic degradation	7
1.2.3.1.	Effect of Light Intensity	7
1.2.3.2.	Effect of Irradiation Time	8
1.2.3.3.	Effect of pH	8
1.2.3.4.	Effect of Reaction Temperature	8
1.2.3.5.	Effect of dye concentration	9
1.3. 1.4.	Contamination sources: Indigo carmine and Methylene blue Electrospinning Process	
1.4.1.	Composite Nanofibers and Their Application	12
1.5.	Mechanical properties	14
Chapter	2 Literature Review	16
2.1.	Introduction	16
2.2.	Literature survey	
2.3.	Thesis main objectives	20
Chapter	3 Experimental Work	21
3.1.	Introduction	21
3.2.	Overall Methodology	21

3.3.	Methodology	.21
3.3.1.	Experimental Materials	.21
3.3.2.	Electrospinning Process	.22
3.3.2.1.	Preparation of CA and CA/GO solutions	.22
3.3.2.2.	Fabrication of CA and CA/GO composite nanofibers via electrospinning	24
3.3.3.	Photodegradation Process	.25
3.3.3.1.	Preparation the photocatalyst CA-GO/TiO ₂ -NH ₂ composite nanofibers	. 25
3.3.3.1.1.	Preparation of CA/GO composite nanofibers	.25
3.3.3.1.2.	Modification of TiO ₂ NPs	.25
3.3.3.1.3.	Chemical crosslinking for the CA/GO composite nanofibers	. 25
3.3.3.2.	Photodegradation Experiment	.26
3.3.4.	Characterizations of the prepared composite nanofibers	.27
3.3.4.1.	Scanning Electron Microscopy (SEM)	.27
3.3.4.2.	Transmission Electron Microscopy (TEM)	.28
3.3.4.3.	Fourier Transform Infrared Spectroscopy (FTIR)	. 29
3.3.4.4.	X- Ray Diffraction (XRD)	.30
3.3.4.5.	Thermo Gravimetric Analysis (TGA)	.31
.3.3.4.6	Tensile tension test	.32
Chapter 4	RESULTS AND DISCUSSION	. 34
4.1.	Characterization Result of CA and CA/GO Composite Nanofibers	.34
4.1.1.	Scanning Electron Microscopy (SEM)	. 34
4.1.2.	X- Ray Diffraction (XRD)	.37
4.1.3.	Fourier Transform Infrared Spectroscopy (FTIR)	.37
4.2.	Mechanical Properties of CA and CA/GO Composite Nanofibers	.38
4.3.	Characterization Result of CA-GO/TiO ₂ -NH ₂ Composite Nanofibers	
4.3.1.	Scanning Electron Microscopy (SEM)	.41
4.3.2.	Transmission Electron Microscopy (TEM)	.43
4.3.3.	X- Ray Diffraction (XRD)	.44
4.3.4.	Fourier Transform Infrared Spectroscopy (FTIR)	.45
4.3.4.1.	Thermo Gravimetric Analysis (TGA)	.46
4.4.	Photodegradation Performance of CA-GO/TiO ₂ -NH ₂ Composite	
Nanofiber	S	.47

4.4.1.	Effect of irradiation time on photodegradation	.49
4.4.2.	Photodegradation kinetics of CA-GO/TiO ₂ -NH ₂ composite nanofibers	.51
4.4.3.	Effect of pH value on photodegradation performance	.53
4.4.4.	Effect of organic dyes concentration on photodegradation performance	.54
4.4.5.	Effect of catalyst dose on the photodegradation performance	.55
Chapter 5	Conclusions and Future Work	.57
5.1.	Conclusions	.57
5.2.	Future Work	.58
References	S	.59
List of Pub	olications	.68

List of Tables

Table 1. 1 Crystal structure and properties of TiO ₂	5
Table 1. 2 Characteristics of Indigo carmin and methylene blue	
Table 4. 1 Mechanical properties of different electrospun polymers	40
Table 4. 2 Kinetic parameters obtained for the degradation of IC and MB on CA-	
GO/TiO ₂ -NH ₂ composite nanofibers	52
Table 4. 3 Comparison of maximum IC and MB adsorption	56

List of Figures

Figure 1. 1 Applications of nanomaterials	4
Figure 1. 2 Mechanism of metaloxide photocatalysis	
Figure 1. 3 The excitation of the electrons upon absorption of ultraviolet (UV) pl	
Figure 1. 4 Chemical structure of (a) indigo carmine and (b) methylene blue	
Figure 1. 5 Schematic illustration of electrospinning components	
Figure 1. 6 Taylor cone formation	
Figure 1. 7 Applications areas of electrospun nanofibers	
Figure 1. 8 Fiber diameter and tensile strength of carbon fiber	
Figure 3. 1 Schematic illustration of electrospinning components	22
Figure 3. 2 ultrasonic device	
Figure 3. 3 hot plate magnetic stirrer	
Figure 3. 4 CA/GO nanofibers with different weight percentage of GO (0, 0.05, 0	
and 1.5 wt.%)	
Figure 3. 5 schematic illustrate the preparation of CA-GO/TiO ₂ -NH ₂ composite	
nanofibers	26
Figure 3. 6 UV-lamp (40 W, with a wavelength range from 320-400 nm)	
Figure 3. 7 Scanning Electron Microscope	
Figure 3. 8 High resolution transmission electron microscopy	
Figure 3. 9 Fourier Transform Infrared Spectroscopy	
Figure 3. 10 X-ray diffraction	
Figure 3. 11 Thermo gravimetric analysis	
Figure 3. 12 Tensometer Universal Testing Machine	
8	
Figure 4. 1 SEM micrographs of (a) CA, (b) CA/.05 wt.%GO, (C) CA/0.5 wt.%G	GO. (d)
CA/1 wt.%GO and (e) CA/1.5 wt.%GO	
Figure 4. 2 Distribution fiber diameters of Pure CA, and composite nanofibers	
Figure 4. 3 XRD diffraction patterns of (a) CA and (b) CA/1.5 wt. % GO	
Figure 4. 4 XRD diffraction patterns of (a) CA and (b) CA/1.5 wt. % GO	
Figure 4. 5 Stress-Strain curve	
Figure 4. 6 Young's modulus of pure CA, and CA/GO composite nanofibers	
Figure 4. 7 SEM images of the fabricated nanofibers (a) CA, (b) CA-GO/TiO ₂ -N	
(c) FE-SEM for CA-GO/TiO ₂ -NH ₂	
Figure 4. 8 TEM images of CA/GO-TiO ₂ -NH ₂ composite nanofibers with different composite nanofibers with different composite nanofibers.	
magnification	
Figure 4. 9 XRD diffraction patterns of CA-GO/TiO ₂ -NH ₂ composite nanofibers	
Figure 4. 10 FTIR spectra of (a) CA nanofibers and (b) CA-GO/TiO ₂ -NH ₂ comp	
nanofibers	
Figure 4. 11 TGA analyses of CA-GO/TiO ₂ -NH ₂ composite nanofibers	
Figure 4. 12 The solutions color changing with the time increasing	
Figure 4. 13 UV—vis curves of IC and MB under UV irradiation light	
Figure 4. 14 Photodegradation efficiency of CA-GO/TiO ₂ -NH ₂ composite nanofi	
a function of irradiation time for removing IC and MB	
Figure 4. 15 Photodegradation kinetics of CA-GO/TiO ₂ -NH ₂ composite nanofibe	
function of irradiation time for removing IC and MB	

52
53
1
54
ght
55

Abbreviations

CA	Cellulose Acetate
NCCA	Nanocrystalline Cellulose Acetate
GO	Graphene Oxide
RGO	Reduced Graphene Oxide
TiO ₂	Titanium Dioxide
CNT	Carbon Nanotube
MWNT	Multi Walled Nanotube
ZnO	Zinc Oxide
Fe ₂ O ₃	Ferric Oxide
CdS	Cadmium Sulfide
ZnS	Zinc Sulfide
NH ₂	Amino Group
NPs	Nanoparticles
IC	Indigo Carmine
MB	Methylene Blue
TTIP	Titanium Isopropoxide
ТЕОТі	Titanium Ethoxide
ТВТ	Titanium Butoxide
APTES	3Aminopropyltriethoxysilane

HO•	Hydroxyl Radicals
NaOH	Sodium Hydroxide
HCI	Hydrochloric Acid
VB	Valence Band
СВ	Conduction Band
P	Phenol
GA	Glutaraldehyde
DMF	N, N-Dimethylformamide
SEM	Scanning Electron Microscope
XRD	X-ray Diffraction
TGA	Thermo Gravimetric Analysis
FTIR	Fourier Transform Infrared Spectroscopy
PH	Hydrogen Ion Concentration

Dedication

I sincerely dedicate this work to my parents...

Abstract

Nanotechnology is a multidisciplinary field that including nanofiber materials which fabricated at the nano scale. Nanofiber materials have superior applications and lead to functions with higher order structures. Electrospinning is the most versatile process that producing nanofibers material with a diameters ranging from nano to submicron. The electrospun nanofibers can be reinforced by particles to fabricate composite nanofibers with unique and good properties. Furthermore, the photocatalytic process has a greet attentions due to dye wastewater treat due to its effectiveness, easy operation, lower cost, non-selective degradation and high efficiency. An attempt was made in this thesis unique CA-GO/TiO₂-NH₂ system was fabricated by chemical crosslinked between electrospun composite nanofibers and TiO₂-NH₂ nanoparticles.

The first part of this work was co-electrospun Graphene Oxide (GO) with Cellulose Acetate (CA) for the production of fluorescence nanofibers composite. The weight percentage of GO varied from 0.05 to 1.5 wt. % in the polymer solution. The morphologies and crystal structures of the resultant composite nanofibers were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The specific interaction was demonstrated by (FT-IR). It was resulted that with increasing GO content the nanofibers diameters decreasing as a result of decreasing the value of the flow rate to generate continuous ultrafine fibers, which ranges from 300±90 for pure CA nanofibers to 210±90 for 1.5 wt.% CA/GO.

The tensile test was performed in order to measure the mechanical properties of pure CA nanofibers and CA/GO composite nanofibers with GO contents of (0.05, 0.5, 1 and 1.5 wt.%). It is concluded that with increasing GO contents the tensile strength, and Young's modulus was improved. The composite nanofibers with 1.5 wt.% GO content shows high tensile strength, which improved about 73% than the pure CA nanofibers 49 MPa. In addition, the highest Young's modulus of CA/1.5%wt GO composite nanofibers was 1600 MPa, which improved by 75% than the pure CA nanofibers 400 MPa. The improvement in tensile strength and Young's modulus indicated to a good dispersion of GO in the CA polymer and strong adhesions between their surfaces. It is significant from the obtained values from the tensile test that the addition of GO improves the mechanical properties of CA nanofibers.

The second part was focused on study the photocatalytic performance of the composite nanofibers for the degradation of two model molecules, methylene blue, and indigo carmine. The photocatalytic degradation was investigated under UV light irradiation. In this regard, an effective photocatalyst obtained from composite nanofibers CA/GO fabricated by electrospinning technique followed by chemical crosslinking surface modified TiO₂ nanoparticles (NPs) which was used for removing the organic dyes of indigo carmine (IC) and methylene blue (MB) from the aqueous solution under UV light irradiation. The crystalline structure analysis and morphologies of CA-GO/TiO₂-NH₂ composite nanofibers were characterized by SEM, TEM, XRD, TGA and FTIR. The prepared CA-GO/TiO₂-NH₂ composite nanofibers displayed significantly enhanced photocatalytic activity for photodegradation of the organic dyes IC and MB under UV light irradiation after 150 min and 250 min respectively. The pH

value of the solution was studied from 2-8 which showed a clear improvement of photocatalytic activity at pH 2. The results indicated that the activated CA-GO/TiO $_2$ -NH $_2$ composite nanofibers employed as an adsorbent for the removal of IC and MB from the aqueous solutions. In addition, the results showed a high adsorption capacity remain up to 65% after five consecutive capacity cycles.