Outcome of Endovascular Treatment of Cerebral Arteriovenous Malformations with Ethylene Vinyl Alcohol Coploymer

Thesis

Submitted For Partial Fulfillment of the Doctoral Degree in **Neurosurgery**

By

Abd Allah Mouhammed Maher Salem

M.B., B.Ch. MSc Faculty Of Medicine-Ain Shams University

Under Supervision of **Prof. Dr. / Husein El Sayed Mohram**

Professor of Neurosurgery Faculty of Medicine – Ain Shams University

Prof. Dr. / Mohamed Alaa EL Dein Habib

Professor of Neurosurgery
Faculty of Medicine – Ain Shams University

Dr. / Sherif Hashem Mourad

Assistant Professor of Neurosurgery Faculty of Medicine – Ain Shams University

Dr. / Ahmed Hassan Abo Zeid

Assistant Professor of Neurosurgery Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2018

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Dr. / Husein El Sayed Mohram, Professor of Neurosurgery Faculty of Medicine – Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Prof. Dr. / Mohamed Alaa EL Dein Habib, Professor of Neurosurgery Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Dr. / Sherif Hashem Mourad, Assistant Professor of Neurosurgery Faculty of Medicine – Ain Shams University, for her great help, active participation and guidance.

I wish to introduce my deep respect and thanks to Dr. / Ahmed Hassan Abo Zeid, Assistant Professor of Neurosurgery Faculty of Medicine – Ain Shams University, for her kindness, supervision and cooperation in this work.

Abd Allah Mouhammed Maher Salem

List of Contents

Title	Page No.
List of Tables	4
List of Figures	5
Introduction	
Aim of the Study	13
Review of Literatur	re
 AVM Definition and History 	14
Cerebrovascular Anatomy and Implication	as for AVMs Treatment
 Genetics and Pathogenesis of Cere 	bral AVMs39
 Hemodynamics of Cerebral AVMs 	43
 Angioarchitecture of Cerebral AVA 	Ms50
 Natural History and Clinical Presentat 	tion of Cerebral AVMs
 Diagnostic Imaging of Cerebral AV 	7Ms67
 Cerebral AVMs Grading Schemes. 	78
 Treatment Algorithms of Cerebral 	AVMs84
 Treatment of AVM: Endovascular 	Methods91
 Treatment of AVM: MicroSurgery. 	106
 Treatment of AVM: Stereotactic Ra 	adiosurgery111
Patients and Methods	116
Results	129
Illustrative Cases	146
Discussion	162
Study Limitations	179
Summary and Conclusion	180
References	181
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Anastomoses to anterior circulation	36
Table (2):	Topographic classification of AVMs	
Table (3):	Spetzler-Martin AVM grading system	78
Table (4) :	Lawton-Young supplementary grading s	system79
Table (5) :	Feliciano grading system	80
Table (6):	Buffalo score.	81
Table (7):	AVMES score.	
Table (8):	Modified Rankin Scale	119
Table (9):	Sex distribution	129
Table (10):	Age distribution among males and fen	nales130
Table (11):	Age groups of the studied patients	130
Table (12):	Presentation distribution in cerebra	l AVM
	patient	
Table (13):	Preinterventional modified Rankin	score
	(mRS) distribution	
Table (14):	Topographic distribution of cerebral A	VMs132
Table (15):	AVM distribution as regard, eloquen	ce and
	venous drainage.	
Table (16):	Showing AVM grading as regard SM	IG and
	Buffalo score	
Table (17):	Angiogrphic features of AVM	136
Table (18):	Angiographic outcome of onyx emboliz	
Table (19):	Clinical outcome measured by	
	compared per and postprocedural	
Table (20):	Correlation between the degree of	
	obliteration and the angioarchit	ectural
	features of AVMs	
Table (21):	Different categories of angiographic-	clinical
	outcome correlation	
Table (22):	S-M grading in different studies in	volving
	crebralAVM	
Table (23):	Curative rates achieved using Ony	x® in
	treating cranial arteriovenous malform	ations 170

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Diagrammatic illustration of arteriovenous malformation	
Fig. (2):	Lateral frontal AVM supplied by super trunk branches, and drained by ascendi to the SSS or descending veins to SupSy	ing veins
Fig. (3):	Left ICA angiogram (lateral & AP vi- lateral frontal AVM fed by the frontal MCA	ews) left trunk of
Fig. (4):	Medial frontal AVM supplied exclus ACA branches, and drained by a medial frontal veins	ively by scending 18
Fig. (5):	Right ICA angiogram (lateral & AP view medial frontal AVM, fed by PcaA and drain into SSS	ws) right d CmaA
Fig. (6):	Lateral temporal AVM supplied by A TempPolA from M1 segment and temporal arteries from the inferior MC and drained by ascending and descending temporal veins	ATA and superior A trunk, ng lateral
Fig. (7):	Left ICA angiogram (lateral & AP view lateral temporal AVM, fed by MidTer PosTempA	vs); right npA and
Fig. (8):	Basal temporal AVM supplied by P Temp.) and MCA(mid. Temp.)brance drained by med temp v	CA(Post. hes and
Fig. (9):	Left vertebral artery angiogram, latera views	
Fig. (10):	Lateral parieto-occipital AVM supplied branches, and drained by ascending SSS and/or descending veins to SupSylv	d by M4 veins to
Fig. (11):	Left ICA angiogram (lateral &AP views parieto-occipital AVM, fed by AntPa), lateral arA and

Fig. No.	Title Page N	10.
Fig. (12):	Medial parieto-occipital AVM: supplied by cortical PCA branches and ACA branches and is drained by superficial veins to the SSS and deep veins to VoG	24
Fig. (13):	Left VA angiogram medial parietooccipital AVM	
Fig. (14):	supplied by branches PCA(A) ventricular body AVM supplied by mPChA with additional supply from the PcaA, ACoA perforators, mLSA, and lPChA. Venous	25
Fig. (15):	drainage collects in the internal cerebral vein (B) Right ICA angiogram, AVM supplied by the ACA/PcaA branches, ACoA perforators, and mPChA <i>Lawton</i> , 2014)	26
T' (10).	AntThaP (a) left ICA angiogram, lateral view, PosThaP, and mPChA(b) left VA angiogram, lateral view, and drained by ThaStrV and ICV	28
Fig. (16):	Left ICA angiogram (lateral & AP views) basal ganglial AVM, supplied by lLSA and drained by ThaStrV	29
Fig. (17):	Cerebellar AVM can be supplied by three cerebellar arteries, and has superficial ascending venous drainage to torcula and transverse sinuses	33
Fig. (18):	Left VA angiogram, lateral and AP views cerebellar AVM supplied by SCA	
Fig. (19):	A: normal aortic arch branching pattern, B: bovine arch (asterisk) and left vertebral origin	
Fig. (20): Fig. (21):	from arch (arrow)	37

Fig. (22):	Novel theories of arteriovenous malformations		
	initiation and progression		
Fig. (23):	Profile of the pressure along the length of the		
	vascular pathway in the brain46		
Fig. (24):	Illustration of changes in relative pressure in		
	AVM feeding vessels, AVM nidus, AVM		
	draining vein, and normal veins 47		
Fig. (25):	Frontal AVM with <i>en passage</i> (arrow head)		
	feeders arising from the M4 segment of MCA 52		
Fig. (26):	Frontal AVM with enlarged feeding artery from		
	ACA		
Fig. (27):	Right frontoparital AVM (A) AP ICA angiogram:		
	supply from MCA &ACA (B) Meningeal supply on		
	right ECA injection		
Fig. (28):	54		
Fig. (29):	A: Lateral ICA angiogram; frontal AVM with an		
_	intranidal aneurysm (arrow).B: AP Vertebral		
	angiogram: flow-related proximal		
	aneurysms(arrow)54		
Fig. (30):	Pure fistulous(lfet) versus pure plexiform AVM		
	nidus(right) 55		
Fig. (31):	Compact (A) versus diffuse (B) nidus56		
Fig. (32):	Left ICA angiogram: left frontal AVM that has		
	superficial venous drainage to SSS 58		
Fig. (33):	Left ICA angiogram; left basal ganglia AVM		
	drained solely through deep venous system		
	(BVR and ICV) (courtesy of Prof.M.Alaa) 58		
Fig. (34):	CT scan shows an intraparenchymal and		
	intraventricular haemorrhage and angiography		
	confirmed the diagnosis of a ruptured AVM 68		
Fig. (35):	CT scan without contrast shows slightly		
	hyperdense parafalcine lesion. On right ICA		
	angiogram; AVM supplied by pericallosal		
	artery69		
Fig. (36):	CTA showing left frontal AVM supplied by		
	MCA and ACA with the superficial venous		
	drainage into SSS appear at the same time		

Fig. No.	Title	Page No.
Fig. (37):	Axial T2 & T1MRI demonstrate reserventine areas of flow voids. T1+ gashows heterogeneous enhancement of with	adolinium the nidus
Fig. (38):	3D TOF MRA allows good delineation of tarteries, the nidus, and venous drainage	the feeding
Fig. (39):	Cerebral proliferative angiopathy wit diffuse nidus and the absence of early veins	h a large v-draining
Fig. (40):	Various types of diagnostic catheters cerebral angiography	s used in
Fig. (41):	Schematic presentation of AVM end embolization	lovascular
Fig. (42):	Butyl Cyanoacrylate (NBCA), and lipid	
Fig. (43):	A.B C pre and post embolization of let	-
Fig. (44):	AVM with hypertrophied lenticulostrial Polyvinyl alcohol (PVA) particulates emboli (Boston Scientific)	${f Contour extbf{@}}$
Fig. (45):	Schematic plan for transvenou embolization	ıs AVM
Fig. (46):	Dural opening exposes AVM and surface of the brain	sufficient
Fig. (47):	Sulcal dissection	
Fig. (48):	Miniclips used to control the deep feeder	
Fig. (49):	The end of resection	
Fig. (50):	Application of the frame to the patr with the lesion close to the center of th	
Fig. (51):	Creation of treatment and dosage plan	113
Fig. (52):	Patient's head is placed in the collimat followed by treatment delivery	
Fig. (53):	Angiosuite in Ain Shams Uneuroendovascular unit	Jniversity

Fig. No.	Title	Page No.
Fig. (54):	Left picture show vial of onyx 18 and DMSO, the left picture show vial of square	
Fig. (55):	Steps for the preparation of Onyx liquid agent	l embolic
Fig. (56):	Sex distribution among patients in the s	
Fig. (57):	Presentation distribution in cerebra patient	
Fig. (58):	Column chart showing topographic distof AVMs	tribution
Fig. (59):	Pie chart showing angiographic out endovascular embolization	come of
Fig. (60):	Chart demonstrating the percentadifferent categories of angiographic	ages of c-clinical
Fig. (61):	outcome correlation	al& A-P ne AVM
Fig. (62):	venous phase draining into superior sinus with venous ectasia (arrow heads) (E-F): Middle meningeal branch was us accessed pedicle for embolization microcatheter (arrow-E) with resultate cast (arrow) appeared in ECA later angiogram.	ed as an through on through ral view
Fig. (63):	(I- J):ICA angiogram lateral & A-P view up showing complete obliteration evidence of recurrene	ws follow with no
Fig. (64):	A: CT brain showing left frontal hemate	oma as a
Fig. (65):	presenting symptom of AVM	P views dus with nmediate

Fig. No.	Title	Page No.
Fig. (66):	(A-B): MRI brain T2 (A) T1with showing left occipital AVM with multi	
Fig. (67):	voids Postembolization left vertebral angiog lateral views showing(G-H-J) onyx	ram AP& cast with
	partial obliteration of the nidus whi phase(I) show patent draining veir residual nidus	for the158
Fig. (68):	(A-B-C): Left carotid angiogram late views showing left parietal AVM nidus by M4 branch and drained into superior	s supplied
	sinus	161

ABSTRACT

Background: Cerebral AVMs are very rare lesions, and this rarity contributes to the difficulty of treating them. There is no consensus concerning the method of treatment to be chosen among neurosurgery, radiosurgery or embolization. Onyx embolization could serve as a curative option with accepted morbidity and mortality. The introduction of Onyx and of catheters with detachable tips has no doubt increased the rate of endovascular occlusion, and decreased the risks associated with treatment in our experience.

Objective: The aim of the study was to assess the outcome of the use of Onyx in the treatment of intracranial AVMs as curative embolization or before neuro- or radiosurgery

Patients and Methods: This analytical prospective study was conducted on 25 patients who were diagnosed with cerebral arteriovenous malformations and underwent endovascular embolization with EVOH copolymer with curative intent during the study period. Interventional procedures were done in the neuro—endovascular unit, neurosurgery department Ain Shams University Hospitals and associate neuroendovascular unit in El Matarya Teaching Hospital in the period between September 2014 and April 2017.

Results: Actually comparing these results especially concerning the cure rate along with other studies was somewhat confusing and problematic owing to the diversity in results between studies across the last 15 years.

Conclusion: For the cases that are not fulfilling these criteria, embolization should be offered as preparing step for other modality of treatment. In our experience, for curative embolization, the AVM should be small sized (< 3 cm), supplied by one vascular territory, with feeders that can tolerate reflux up to 2–3 cm, with clear proximal parts of the draining veins, and not located in deep structures.

Keywords: arteriovenous malformations - dimethyl-sulfoxide.

INTRODUCTION

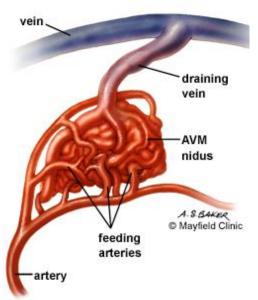
Despite advances in neurosurgical and endovascular techniques, treatment of cerebral arteriovenous malformations (AVMs) remains challenging, often requiring a multidisciplinary approach. Nidus reduction before surgery or radiosurgery, curative embolization, and palliative embolization of AVMs are the different goals of endovascular treatment (*Bruno and Meyers*, 2012).

Since the first report in the early 1960s about transcatheter embolization of cerebral AVMs, a considerable evolution of microcatheter tools, embolization materials, and techniques has improved the success of embolization. Onyx (ev3, Irvine, California) was introduced a few years ago as a new embolic material for the endovascular treatment of cerebral AVMs. It consists of an ethyl-vinyl alcohol (EVOH) copolymer dissolved in dimethyl-sulfoxide (DMSO) with tantalum powder added for radio-opacity (Flores et al., 2014).

Its slow solidification allows for more prolonged and controlled injection which permits theoretically slower filling, better penetration, and obliteration of the nidus. The introduction of Onyx into our embolization practice has brought a different endovascular treatment philosophy in which a "cure" is intended in all cerebralAVMs, rather than being a presurgical procedure.

The aim of the embolization has become, primarily, to cure all small- to medium-sized AVMs by embolization alone and secondly, to reduce the size of the larger AVMs (*Saatci et al.*, 2011).

AIM OF THE STUDY


Overall the aim of the study is to assess the outcome of the use of Onyx in the treatment of cerebral AVMs as curative embolization or before neuro- or radiosurgery as follows:

- Evaluation of the rates of initial obliteration of AVMs as well as the reperfusion rates after embolization.
- Assessment of the safety and efficacy of endovascular use of onyx focusing on the embolization techniques.
- Analysis of the angioarchitectural features of AVMs in which the injection of Onyx is successful and in which the technique fails.

AVM Definition and History

Definition

Cerebral arteriovenous malformations (AVMs) can be defined as pathological, congenital vascular lesions that may appear throughout the central nervous system. They consist of direct connections between arteries and veins through an intervening dysplastic vascular core "nidus", without the normal interposed capillary bed (Fig 1). This allows high-flow, rapid arteriovenous shunting, thereby inducing arterial hypotension in vessels feeding the arteriovenous malformation and neighboring areas of the brain (*Tanaka*, 2017).

Fig. (1): Diagrammatic illustration of cerebal arteriovenous malformation. *(Tanaka, 2017)*

Chronological History of AVMs:

The first pathological description of AVM was originated by *Virchow* in **1863**. The first complete excision of a cerebral AVM was made by *Jules-Émile Péan* in 1889. Vilhelm Magnus in 1914 was the first to treat cerebral AVMs using conventional fractionated radiation (*Beneš & Bradáč*, 2017).

In 1927, *Egas Moniz* was the first to perform successful cerebral angiogram by direct carotid injection, which left a big impact on the diagnosis and understanding of AVMs. *Herbert Olivecrona* in 1932 successfully removed an AVM introducing the technique of ligating superficial feeding vessels, and to leave the ligation of the draining veins as a final step (*Colby et al.*, 2012).

Luessenhop and William Spence in **1960s** developed the endovascular techniques by blocking abnormal feeding vessels by direct puncture embolic material. Limited progress was made with AVM embolization during the **1960s**. Yasargil in **1969** had the first published microsurgical resection of AVM series (*Colby et al.*, **2012**).

Advancements in catheter design in the **1980s** permitted selective cannulation of the AVM arterial pedicles. An array of embolic agents was used in this decade, including silk threads, alcohol, and polyvinylalcohol (PVA). *Robert Spetzler and Neil Martin* in **1986** published AVM classification scheme (*Beneš & Bradáč*, 2017).

During the **1990s**, NBCA and polyvinyl alcohol emerged as the most popular embolization materials for AVMs. Onyx was introduced in **1990** and received FDA approval for presurgical embolization of AVMs in **2005** (*Al Awar and Patel*, *2017*).