"Study the interplay of Sfrp5 and WISP1 in obesity and type 2 diabetes mellitus patients"

A thesis submitted by

Nada Salah El Din Habib Ahmed

Demonstrator of Biochemistry, Faculty of Pharmacy, Ain Shams University B. Ph. Sci., Ain Shams University (2013)

for the partial fulfillment of Master Degree in Pharmaceutical Sciences (Biochemistry)

Supervised by

Prof. Dr. Hala Osman El- Mesallamy

Professor of Biochemistry Head of the Biochemistry Department Faculty of Pharmacy, Ain Shams University

Prof. Dr. Mohamed Hesham El Hefnawy

Professor of Endocrinology

Dean of the National Institute of Diabetes and Endocrinology

Biochemistry Department Faculty of Pharmacy Ain Shams University 2018 بسم الله الرحمن الرحميم

"قَالُواْ سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ الْعَلِيلَمُ الْحَكِيمُ" أَنتَ الْعَلِيلَمُ الْحَكِيمُ"

صدق الله العظيم

سورة البقرة آية (٣٢)

ACKNOWLEDGEMENTS

<u>Acknowledgements</u>

First of all I thank *God* for his blessing, answered prayers and for lighting my way to eventually reach my aims, as without His help, this work would have never seen the light.

I owe my deepest sincere gratitude and respect for accomplishing this work to my supervisor **Prof. Dr. Hala Osman El-Mesallamy, Professor and Head of Biochemistry Department, Faculty of Pharmacy, Ain Shams University,** for her keen, continuous, enthusiastic support patient guidance, faithful encouragement, invaluable suggestion and enlightening advice throughout the whole work. I hope that one day I can return back part of her great favor.

I would like to thank **Prof. Dr. Mohamed Hesham El Hefnawy, Dean of the National Institute of Diabetes and Endocrinology** for his keen guidance, following up the patients and facilitating samples collection.

I would also like to thank Prof. Veronica Murahovschi, Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charite – Universitatsmedizin, Berlin, Germany for her assistance and support in answering questions through her expertise in WISP1research field to help accomplish this work.

I would like to thank all our study volunteers, participated physicians, the nursing staff and laboratory technicians for their assistance in performing the mentioned study.

Finally, No words can repay my heartily thanks, gratitude and appreciation to **my family and colleagues**, for their continuous patience, understanding, and support during the whole thesis tiring period.

Contents

Subjects	
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
1. Introduction and Aim of the Work	1
2. Literature Review	3
2.1. Diabetes mellitus and its prevalence	3
2.2. Type 2 diabetes mellitus	5
2.2.1. β-cells and T2DM	8
2.2.2. Insulin resistance and β- cell dysfunction in debate	11
2.2.3. β-cell fate throughout the disease	12
2.2.3.1. β-cell compensation	13
2.2.3.2. β-cell decompensation	15
2.2.3.3. β-cell failure	15
2.2.4.Assessment of β-cell function and insulin resistance	18
2.3. Wnt signaling pathway in obesity and T2DM	19
2.4. Adipokines and their association with obesity and T2DM	23
2.4.1. Secreted frizzled-related protein 5	25
2.4.2. Wnt1 inducible signaling pathway protein 1	29
3. Subjects and Methods	34
3.1. Subjects	34
3.2.Study protocol	36
3.3.Blood samples	37

3.4. Methods	39
3.4.1. Clinical examination	39
3.4.2.Determination of fasting plasma glucose concentrations	39
3.4.3. Determination of whole blood glycated haemoglobin	41
3.4.4. Determination of lipid profile	43
3.4.4.1. Determination of serum triglycerides concentrations	43
3.4.4.2.Determination of serum total cholesterol concentrations	45
3.4.4.3.Determination of high density lipoprotein-cholesterol concentrations	46
3.4.4.4. Determination of low density lipoprotein-cholesterol concentrations.	47
3.4.5. Determination of serum high sensitivity C- reactive protein concentrations	48
3.4.6.Determination of serum insulin concentrations	52
3.4.7. Determination of serum proinsulin concentrations	55
3.4.8. Calculation of HOMA2-IR and HOMA2-% β	58
3.4.9. Determination of serum Sfrp5 concentrations	59
3.4.10. Determination of serum WISP1 concentrations	62
3.5. Statistical analysis	65
4. Results	66
5. Discussion	7 9
6. Summary and Conclusions	88
7. Recommendations	91
8. References	92
9. Arabic Summary	108

LIST OF ABBREVIATIONS

ATP	Adenosine triphosphate
BMI	Body mass index
CCN	Cysteine rich 61 (CYR 61) Connective tissue growth factor (CTGF) Nephroblastoma overexpressed (NOV)
CTGF	Connective tissue growth factor
CYR 61	Cysteine rich 61
DM	Diabetes mellitus
FFAs	Free Fatty acids
FPG	Fasting plasma glucose
HbA _{1C}	Glycated haemoglobin
HDL-C	High density lipoprotein cholesterol
hs-CRP	High sensitivity C-reactive protein
HOMA	Homeostatic Model Assessment
IR	Insulin resistance
JNK	c-Jun N-terminal kinase
LDL-C	Low density lipoprotein cholesterol
Met	Metformin
NIDE	National institute of diabetes and endocrinology
NOV	Nephroblastoma overexpressed
OHA	Oral hypoglycemic agents
PI	Proinsulin
Sfrp	Secreted frizzled-related protein
Su	Sulphonylureas
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
TC	Total cholesterol
TCF7L2	Transcription factor 7-like 2
TG	Triglycerides
WC	Waist circumference
WISP	Wnt inducible signaling pathway protein
WHO	World Health Organization

LIST OF TABLES

Table no.	Title	Page no.
4.1	General characteristics of the studied groups	66
4.2	Fasting plasma glucose, HbA_{1c} % and lipid profile in the studied groups	68
4.3	Fasting serum insulin, serum PI, HOMA2-IR and HOMA2-% indices of the studied groups	69
4.4	Serum high sensitivity C-reactive protein concentrations	70
4.5	Serum WISP1 concentrations	72
4.6	Spearman's correlation coefficient between Sfrp5 and various parameters in the studied groups	74
4.7	Spearman's correlation coefficient between WISP1 and various anthropometric and biochemical parameters in the studied groups	76
4.8	Simple linear regression analysis using Sfrp5 or WISP1 as dependent variable.	77

LIST OF FIGURES

Figure	TTV-A	Page no.
no.	Title	
2.1	Diabetes risk factors and complications	4
2.2	The etiology of the T2DM pathogenesis.	5
2.3	Model of the critical role of impaired insulin release in T2DM	7
2.4	Insulin action	9
2.5	Changing concepts of pathogenesis of T1DM and T2DM in the	10
	past and present	±v
2.6	Mechanisms of β -cell compensation for IR.	14
	A representation for the progression from β -cell compensation	
2.7	to failure in the face of obesity-induced IR and the role of	16
	glucolipotoxicity	
2.8	Mechanisms of β -cell failure in T2DM.	17
2.9	Canonical Wnt signaling pathway	21
2.10	Adipokines and inflammation process	24
2.11	Sfrp5 in obesity and IR	27
2.12	Effect of Sfrp5 on Wnt signaling	28
2.13	Wnt signaling in idiopathic pulmonary fibrosis pathogenesis	31
2 14	Diagram of signaling pathways responsible for nitric oxide	22
2.14	(NO)-induced WISP-1 expression and function.	32
3.1	Serum high sensitivity C-reactive protein standard curve	51
3.2	Serum insulin standard curve	54
3.3	Serum proinsulin standard curve	57
3.4	The HOMA2 calculator	58
3.5	Serum Sfrp5 standard curve	61
3.6	Serum WISP1 standard curve	64
4.1	Serum concentrations of Sfrp5 in the studied groups	71
4.2	Spearman's correlation coefficient between Sfrp5 and various	
(a),	anthropometric and biochemical parameters in the studied	75
(b),(c),	groups	15
(d)	(a) $HOMA2$ - IR , (b) HbA_{1c} %, (c) FPG , (d) TG .	
4.3	Spearman's correlation coefficient between Sfrp5 and WISP1 in the studied groups	78

INTRODUCTION AND AIM OF THE WORK

1. Introduction and Aim of the Work

The global pandemic of obesity, insulin resistance (IR) together with numerous circulating plasma factors contribute in a vicious cycle ultimately leading to progression of type 2 diabetes mellitus (T2DM) and increasing its prevalence (*Tanabe et al.*, 2017).

The association of obesity and T2DM is believed to be through biologically active molecules known as adipokines. Adipokines might have a pathophysiological role in IR and β -cell dysfunction which highlights the etiology for T2DM (*Neville et al.*, 2016; *Tanabe et al.*, 2017). Unravelling newly identified adipokines massively increases, however the molecular mechanisms by which adipokines affect the pathogenesis of T2DM are not well elucidated.

Secreted frizzled-related protein 5 (Sfrp5) is a recently identified antiinflammatory adipokine (*Ouchi et al.*, 2010). The circulating Sfrp5 level has been extensively studied in field of cancer, but interestingly some animal studies revealed its involvement in obesity, glucose metabolism (*Rulifson et al.*, 2014; *Vincent and Postovit*, 2017) and β -cell proliferation (*Rebuffat et al.*, 2013). However, limited human studies reported contradictory data about Sfrp5 in obesity, T2DM and its association with β -cell function and IR.

Wnt1 inducible signaling pathway protein 1 (WISP1), is another recently validated adipokine and a downstream target of Wnt signaling pathway (*Murahovschi et al.*, 2015). The circulating WISP1 level has been studied in several fields including cancer (*Zuo et al.*, 2010) and atherosclerosis (*Mill et al.*, 2012; *Qi et al.*, 2016). Being a target of Wnt1 in Wnt signaling pathways, it has been linked to metabolic disturbances (*Zhong*)