

SOLAR HETEROGENEOUS ORGANIC RANKINE CYCLE

By

Nora Hany Ibrahim Shaheen

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

SOLAR HETEROGENEOUS ORGANIC RANKINE CYCLE

By **Nora Hany Ibrahim Shaheen**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in Chemical Engineering

Under the Supervision of

Prof. Dr. Seif Eddeen Khaled
Fateen

Professor
Chemical Engineering
Faculty of Engineering, Cairo University

Prof. Dr. Ahmed Soliman Mohamed
Fawzy

Associate Professor
Chemical Engineering
Faculty of Engineering, Cairo University

SOLAR HETROGENEOUS ORGANIC RANKINE CYCLE

By **Nora Hany Ibrahim Shaheen**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Approved by the Examining Committee

Associate Prof.Dr.Ahmed Soliman Mohamed Fawzy(Thesis Main Advisor)

Associate Prof. **Dr. Ayat Ossama Mohamed Ghallab** (Internal Examiner)

Associate Prof. Dr. Mamdouh Ayad Gadalla Ibrahim (External Examiner)

 Head of Chemical Engineering Department, Faculty of Engineering, PortSaid University **Engineer's Name:** Nora Hany Ibrahim Shaheen

Date of Birth: 27/02/1991 **Nationality:** Egyptian

E-mail: <u>eng.nshaheen@yahoo.com</u>

2018

Phone: +202 010 9279 2435 **Address:** 39 El Taif St.-El Mohandseen

Registration Date: 1/10/2014

Degree: Master of Science **Department:** Chemical Engineering

Supervisors:

Awarding Date:

Prof. Dr. Seif Eddeen Khaled Fateen

Associate. Prof Dr. Ahmed Soliman Mohamed Fawzy

Examiners:

Associate Prof. Ahmed Soliman (Thesis main advisor) Associate Prof. Dr. Ayat Ossama (Internal examiner) Associate Prof. Mamdouh Ayad (External examiner) Head of Chemical Engineering Department, Faculty of

Engineering, Port Said University

Title of Thesis:

Solar Heterogeneous Organic Rankine Cycle

Key Words:

Heterogeneous Binary Mixtures; Azeotropic Mixtures; Organic Rankine Cycle; Solar Energy; Hexane Water Mixtures

Summary:

The present thesis work studies the opportunities of performance improvement related to Solar Organic Rankine Cycle using heterogeneous organic working fluids, which are predicted to increase the thermal efficiency of the cycle from a thermodynamic point of view. This cycle is of critical importance since it can be integrated in multiple industrial plants helping in the waste heat recovery, which is a cost effective and environmentally friendly solution.

In the study, an investigation was carried out on three stages. The first stage was the selection of pure working fluids, which are suitable for cost efficient low temperature scale solar application. The second stage was a comparison between heterogeneous organic working fluid mixtures and pure working alternatives. Third, all the heterogeneous working mixture alternatives that did not achieve an increase in either thermal efficiency or savings were eliminated. Finally, the optimum alternatives of heterogeneous mixtures were indicated after multiple screening steps as water normal hexane and water cyclohexane mixtures, which showed promising results in terms of thermal efficiency increase taking into consideration cost savings and safety limitations.

Acknowledgments

This work is a result of honest efforts and the support of those who stood by me in the journey.

My supervisors Dr. Ahmed Soliman and Dr. Seif El Deen Fateen who suggested this thesis topic passing on their knowledge and expertise to me, they offered me their time and efforts empowering me to move all the way until the end.

The Chemical Engineering Department with all its members especially Prof. Dr. Osama Abd El Bary, Prof. Dr. Mai Fouad, Prof. Dr. Reeem Ettouney, Eng. Nourhan Hisham and Eng. Hoda Anwar who supported me at different stages of the journey either in the pre-masters or in the thesis work stages.

Finally, my family who has always supported me in better or in worse, my mother who always pushed me to do my best, my sisters who encouraged me to pursue my dreams and my father who taught me how to leave my legacy, even though he passed away but his legacy is alive now and here on this work.

Dedication

This thesis is dedicated to the soul of my beloved father, my brave mother, my kind sisters and all the people who stood by my side in the journey.

Table of Contents

ACKNOWLEDGMENTS	I
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	V
LIST OF FIGURES	
NOMENCLATURE	
ABSTRACT	
CHAPTER 1: INTRODUCTION	
CHAPTER 2: LITERATURE REVIEW	
2.1 Types of Energy Resources	2
2.2 THE TRANSITION FROM CONVENTIONAL ENERGY TO RENEWABLE ENERGY	
2.3 Solar Energy Potential Use in Egypt	
2.4 Solar Power Generation	
2.4.1 Photovoltaic Cells	
2.4.1 Priotovoltaic Ceris 2.4.1.1 Crystalline Silicon Photovoltaic Cells	
2.4.1.2 Thin Film Photovoltaic Cells	
2.4.1.3 Organic Material Photovoltaic Cells	
2.4.2 Solar Thermal Technologies	8
2.4.2.1 Charging Cycle (Thermal Energy Storage Cycle)	9
2.4.2.2 Organic Rankine Cycle (Discharging Cycle)	
2.4.2.2.1 The ORC Basic Scheme	
2.4.2.2.2 ORC modified with a recuperator	
2.4.2.2.4 Classification of the ORC	
2.4.2.2.5 Comparison between Steam and Organic Rankine Cycle	
2.5 ORC APPLICATIONS	
2.5.1 Solar ORC Application	
2.5.2 Pure Working Fluid Selection.	
2.5.3 Zeotrpoic and Azeotropic Mixtures	
CHAPTER 3: STATEMENT OF THE PROBLEM	
CHAPTER 4: SIMULATION MODEL DESIGN DEVELOPMENT	
4.1Main Design Equations Used	
4.1.1 Work and Heat Equations per Each Stage	
4.1.2 Thermal, Pump and Turbine Efficiencies	
4.1.3 Second Law Efficiency	
4.1.4 Total Irreversibility Calculations	
4.1.5 Cost Saving Calculations	
4.2 CALCULATION METHODOLOGY & SIMULATION ASSUMPTIONS	33
4.2.1 Simulation Solution Logic	33

4.2.2 Simulation Solution Steps followed on Aspen Plus	34
4.2.3 Process Variables	
4.2.4 Simulation Assumptions	36
4.2.5 Selection of the Working Fluid used in the Simulation Scheme	37
CHAPTER 5: RESULTS AND DISCUSSION	39
5.1 RESULTS OF THE PURE WORKING FLUIDS	39
5.1.1 Thermal Efficiency Results for Selected Pure Working Fluids	41
5.1.2 Thermal Efficiency Results for Selected Pure Working Fluids	43
5.2 SELECTION OF THE OPTIMUM HETEROGENEOUS MIXTURES	44
5.2.1 Creating Matrix of Mixtures	45
5.2.2 1st Screening Step	
5.2.3 2 nd Screening Step	47
5.2.4 3 rd Screening Step	
5.2.5 4 th Screening Step	53
5.2.6 5 th Screening Step	67
5.1.6.1 Water Cyclohexane Mixture	
5.1.6.2 Water Normal Hexane Mixture	71
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS	74
REFERENCES	75

List of Tables

Table 2.1: Comparison between Steam and Organic Rankine Cycles	16
Table 4.1: Comparison between Aspen HYSYS and Aspen Plus soft wares	34
Table 4.2: Constraints inserted in Aspen plus Software Simulation	36
Table 4.3: The properties of different hydro carbon categories	38
Table 5.1: Aliphatic hydrocarbons results from Aspen Plus software	42
Table 5.2: Alcohols results from Aspen Plus software	42
Table 5.3: Alicyclic hydrocarbons results from Aspen Plus software	42
Table 5.4: The matrix of 45 created mixtures	46
Table 5.5: 13 Excluded Mixtures for T _{outlet condenser} >40°C in the 1 st screening step	46
Table 5.6: 10 Excluded Mixtures in 2 nd screening step	47
Table 5.7: The Details of Pressure Composition Diagram of the 10 Excluded Mixtu	
in 2 nd screening step	
Table 5.8: The four semi excluded mixtures	
Table 5.9 Methanol Cyclo pentane results from Aspen Plus Simulator	49
Table 5.10 2,2-Dimethyl Butane/Methanol Mixture results	
Table 5.11 2-Methyl Pentane/ Methanol Mixture Results	
Table 5.12 Normal Hexane/ Methanol mixture results	
Table 5.13: Possible 18 Best Alternatives of Heterogeneous Organic Mixtures	53
Table 5.14 Water/Cyclohexane mixture results	54
Table 5.15 Propanol/Cyclohexane mixture results	
Table 5.16 Water/Normal Hexane Mixture results	
Table 5.17 Normal Hexane/Ethanol Mixture Results	56
Table 5.18 Isopropanol/ Normal Hexane Mixture Results	57
Table 5.19 Water/ 2-Methyl Pentane Mixture Results	
Table 5.20 Ethanol/ 2-Methyl Pentane Mixture Results	
Table 5.21 Cyclohexane/Isopropanol Mixture Results	
Table 5.22 Propanol/ n-Hexane Mixture Results	60
Table 5.23 Ethanol/Cyclopentane Mixture Results	60
Table 5.24 Isopropanol/ 2-Methyl Pentane Mixture Results	61
Table 5.25 Isopropanol/ 2,2-Dimethyl Butane Mixture Results	62
Table 5.26 2,2-Dimethyl Butane / Ethanol Mixture Results	
Table 5.27 Isopropanol/ Cyclopentane Mixture Results	63
Table 5.28 2-Methyl hexane/ Isopropanol Mixture Results	
Table 5.29 Cyclohexane/ Ethanol mixture results	64
Table 5.30 Propanol/ 2,2-Dimethyl Butane Mixture Results	
Table 5.31 Propanol/ 2, Methyl Pentane Mixture Results	

List of Figures

Figure 2.1: The two main categories of energy resources	2
Figure 2.2: EPO Patent Publications per different renewable energy sources (1979-	
2003)	
Figure 2.3: Market size evolution comparison (1980-2005)	
Figure 2.4: The components of interaction between solar radiation and atmosphere	
Figure 2.5: Global annual average solar irradiance in KWh/m ²	4
Figure 2.6. Color power concretion acts coming	5
Figure 2.6: Solar power generation categories	
Figure 2.7: Photovoltaic cell applications in Egypt	
Figure 2.8: Mono crystalline silicon PV Cell	
Figure 2.9: Amorphous silicon PV Cell	
Figure 2.10: Organic PV Cell	
Figure 2.11: TES combined power generation plant	
Figure 2.12: The three Categories of thermal energy storage materials	
Figure 2.13: The basic layout for ORC	
Figure 2.14: T-S Diagram for basic layout of ORC	
Figure 2.15: Schematic Diagram of the ORC with recuperator	
Figure 2.16: Waste heat recovery power generation plant integrated with ORC	
Figure 2.17: ORC classification based on pressure level	
Figure 2.18: ORC classification based on temperature level	
Figure 2.19: ORC Applications	
Figure 2.20: HTF Technology Solar ORC	
Figure 2.21: DVG Technology Solar ORC	18
Figure 2.22: Main categories of solar collectors	19
Figure 2.23: Integrated solar ORC in SWRO desalination plant	20
Figure 2.24: Isentropic fluid vapor saturation dome in T-S Diagram	22
Figure 2.25: Wet fluid vapor saturation dome in T-S Diagram	
Figure 2.26: Dry fluid vapor saturation dome in T-S Diagram	
Figure 2.27: NFPA Diamond	
Figure 2.28: Schematic T-S Diagram of ORC using zeotropic working fluids mixture	
Figure 2.29: Temp. Composition Diagram of min boiling heteroazeotrope	
Figure 2.30: Temp. Composition Diagram of zeotropic mixture	
Figure 2.31: Temp. Composition Diagram of min boiling homoazeotrope	
Figure 2.32: Temp. Composition Diagram of max boiling azeotrope	
Figure 3.1 : A Scheme of the heterogeneous mixture pressure composition Diagram.	
Figure 3.2: A schematic comparison between a pure component and its heterogeneous	
mixture using pressure and temperature constraints	
Figure 4.1: The simulation solution logic	
Figure 4.2: ORC drawn on Aspen Plus software	
Figure 4.3: The configuration of Flat Plate Collector (FPC) (Source: [9], [40])	.34
Figure 4.4: Main categories of the organic fluids	
Figure 5.1: Vapor pressure curves of alcohols	
Figure 5.2: Vapor pressure curves of alicyclic hydrocarbons	
Figure 5.3: Vapor pressure curves of aliphatic hydrocarbons	
Figure 5.4: Vapor pressure curve of water	41

Figure 5.5: % η results of pure working fluids41
Figure 5.6: The cost of pure working fluids in (\$/kg)43
Figure 5.7: Screening Steps for optimum alternatives selection
Figure 5.8: Schematic T-S Diagrams of the organic pure working fluids liquid-vapor
zones45
Figure 5.9: The dry and wet working fluids45
Figure 5.10: The % η increase and cost savings for the 10 excluded mixtures in the 2 nd
screening Step48
Figure 5.11: Pressure Composition Diagram of Methanol/Cylopentane, 1 st mixture in
the four semi excluded mixtures
Figure 5.12: Pressure Composition Diagram of 2,2-Dimethyl Butane /Methanol, 2 nd
mixture in the 4 semi excluded mixtures50
Figure 5.13: Pressure Composition Diagram of 2-Methyl Pentane/Methanol, 3 rd mixture
in the 4 Semi excluded mixtures50
Figure 5.14: Pressure Composition Diagram of Normal Hexane/Methanol, 4 th mixture
in the 4 semi excluded mixtures51
Figure 5.15: The % η increase and cost Savings for component 1 in the four semi-
excluded mixtures
Figure 5.16: The % η increase and cost savings for component 2 in the four semi-
excluded mixtures
Figure 5.17: Pressure Composition Diagram of Water / Cyclohexane, 1 st mixture in the
18 best alternatives
Figure 5.18: Pressure Composition Diagram of Propanol / Cyclohexane, 2 nd mixture in
the 18 best alternatives
Figure 5.19: Pressure Composition Diagram of Water/Normal Hexane, 3 rd mixture in
the 18 best alternatives56
Figure 5.20: Pressure Composition Diagram of Normal Hexane/Ethanol, 4 th mixture in
the 18 best alternatives56
Figure 5.21: Pressure Composition Diagram of Isopropanol / Normal hexane Mixture,
5 th mixture in the 18 best alternatives
Figure 5.22: Pressure Composition Diagram of Water/2-Methyl pentane, 6 th mixture in
the 18 best alternatives
Figure 5.23: Pressure Composition Diagram of Ethanol /2-Methyl pentane,7 th mixture
in the 18 best alternatives
Figure 5.24: Pressure Composition Diagram of Cyclohexane/Isopropanol,8 th mixture in
the 18 best alternatives
18 best alternatives
Figure 5.26: Pressure Composition Diagram of Ethanol/Cyclopentane, 10 th mixture in
the 18 best alternatives
Figure 5.27: Pressure Composition Diagram of Isopropanol / 2-Methyl Pentane, 11 th mixture in the 18 best alternatives
Figure 5.28: Pressure Composition Diagram of Isopropanol / 2,2-Dimethyl Butane, 12 th
mixture in the 18 best alternatives
Figure 5.29: Pressure Composition Diagram of 2,2-Dimethyl Butane/ Ethanol,13 th
mixture in the 18 best alternatives
Figure 5.30: Pressure Composition Diagram of Isopropanol/Cyclopentane, 14 th mixture
in the 18 best alternatives
Figure 5.31: Pressure Composition Diagram of 2-Methyl hexane /Isopropanol,15 th
mixture in the 18 best alternatives

Figure 5.32: Pressure Composition Diagram of Cyclohexane/Ethanol, 16 th mixture in
the 18 best alternatives64
Figure 5.33: Pressure Composition Diagram of Propanol/2,2-Dimethyl Butane, 17 th
mixture in the 18 best alternatives65
Figure 5.34: Pressure Composition Diagram of Propanol /2, Methyl Pentane, 18 th
mixture in the 18 best alternatives65
Figure 5.35: The 18 best alternatives % Cost Savings and % η increase results6
Figure 5.36: The criteria of choosing the optimum alternatives6
Figure 5.37: NFPA standard of the components in the best 18 alternative mixtures6
Figure 5.38: Water Cyclohexane pressure composition Diagram66
Figure 5.39: Water Cyclohexane net power vs pump outlet pressure Diagram66
Figure 5.40: Water Cyclohexane % η vs. pump outlet pressure Diagram69
Figure 5.41: Water Cyclohexane η/η Carnot vs. pump outlet pressure Diagram69
Figure 5.42: Water Cyclohexane ΔS total vs. pump outlet pressure Diagram70
Figure 5.43: Water Normal hexane pressure composition Diagram
Figure 5.44: Water Normal hexane W _{net} vs. pump outlet pressure Diagram7
Figure 5.45: Water Normal Hexane % η vs pump outlet pressure Diagram72
Figure 5.46: Water Normal Hexane η/η_{Carnot} vs. pump outlet pressure Diagram72
Figure 5.47: Water Cyclohexane ΔS total vs. pump outlet pressure Diagram73

Nomenclature

Abbreviations

BIPV Building Integrated Photovoltaic
CSP Concentrated Solar Power
CPC Compound Parabolic Collector
CPV Concentrated Photo Voltaic

CSTP Concentrated Solar Thermal Power

DVG Direct Vapor Generation

DHI Diffusion Horizontal Irradiance

DNI Direct Normal Irradiance EHE External Heat Exchanger

EPA Environmental Protection Agency ETC Evacuated Trough Collector

FPC Flat Plate Collector

GHP Global Horizontal Irradiance
 GWP Global Warming Potential
 HPP High Pressure Pump
 HTF Heat Transfer Fluid
 IHE Internal Heat Exchangers

kWh Kilo Watt Hour

LFC Linear Fresnel Collector
LFL Lower Flammability Limit
MDM Octamethyl trisiloxane
MM Hexa methyl disiloxane
NBP Normal Boiling Point

NFPA National Fire protection Agency
 ODP Ozone Depletion Potential
 ORC Organic Rankine Cycle
 PCM Phase Change Material
 PFC Per Fluoro Carbons
 PR Peng Robinson

PTC Parabolic Trough Collector

PV Photovoltaic RO Reverse Osmosis

STPCSolar Thermal Power CycleSWROSolar Water Reverse OsmosisTESThermal Energy Storage

Greek Letter Symbols

 $\begin{array}{ccc} \mu & & Viscosity & & kg/m. \ sec \\ \dot{W} & Power \ Consumption & kW \\ \lambda & Latent \ Heat & kJ/kg \end{array}$

 η_{Carnot} Carnot Efficiency $\eta_{thermal}$ Thermal Efficiency
Second law Efficiency

Letter Symbols

Cp	Specific Heat	KJ/kg. K
ṁ	Mass flow Rate	kg/s
Q	Energy	kJ
H	Enthalpy	kJ/kg
K	Thermal Conductivity	W/mK
P	Pressure	bar
P	Pressure Ratio	
S	Entropy	kJ/K
ΔS_{system}	Change of Entropy in System	kJ/K
ΔS surroundings	Change of Entropy in Surroundings	kJ/K
T	Temperature	°C
T hot pp	Pinch Point difference at Hot Side	°C
T cold pp	Pinch Point difference at cold Side	°C
T_H	Highest Temperature in the cycle	°C
T_L	Lowest Temperature in the Cycle	°C
T_{source}	Heat Source Temperature	°C
T_{sink}	Heat Sink Temperature	°C
T_o	Ambient Temperature	°C

Abstract

The current thesis is dealing with the application of solar thermal power generation that contributes to saving Earth; one of the merits of this application is its ability to be integrated within any process for variety of applications; one of which is the waste heat recovery. Generally, the solar thermal power generation plants consist of thermal energy storage (TES) systems and power generation cycles. Egypt has a high potential in solar energy utilization since it is located within the Sun Belt countries and has wide land area available for harnessing this energy resource.

The present work addresses improving the performance of Organic Rankine Cycle (ORC), this cycle can be a part of low temperature solar thermal electric generation plant. ORC produces power via the conversion of heat energy into mechanical energy. Although, heterogeneous organic working mixtures can be utilized in ORC for their potential to improve its thermal efficiency, no studies were published in this topic and that is where the novel impact of this investigation lies. Heterogeneous working fluids have higher vapor pressure at azeotropic compositions than their pure alternatives at the same working conditions, which can eventually lead to a significant improvement of the thermal efficiency of the cycle from a thermodynamic point of view using the proper temperature and pressure constraints.

The investigation to improve the ORC thermal efficiency was completed successfully in three main stages. The first stage is the development of a simulation model using Aspen plus Software in which suitable pure organic working fluids are used in ORC application using Direct Vapor Generation (DVG) Technology in low temperature scale within the temperature range between 30 °C - 200 °C . The heat collector used is of the Flat Plate Collector (FPC) type, which does not have complex tracking systems with relatively low cost. In the second stage, a comparison was performed between the thermodynamic calculations of pure and heterogeneous organic working mixtures. The third and final stage was the five steps of screening followed in order to identify the heterogeneous mixtures optimum alternatives.

The results are promising and they are covering all the stages followed in the calculations. From an engineering point of view, the two optimum heterogeneous organic mixtures are water/cyclo hexane and water/normal hexane mixtures. The Optimum mixtures are indicated based on their potential to achieve significant improvement in the performance of the ORC in terms of thermal efficiency taking into account the cost savings and safety limitations.