EFFECT OF NITROGEN AND ZINC LEVELS ON YIELD AND TECHNOLOGICAL CHARACTERS OF SOME PROMISING FLAX GENOTYPES

By

RIHAM HAMED HASSAN AHMED

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Cairo Univ., 2004 M.Sc. Agric. Sci. (Agronomy), Fac. Agric., Cairo Univ., 2010

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Agronomy)

Department of Agronomy
Faculty of Agriculture
Cairo University
EGYPT

2018

APPROVAL SHEET

EFFECT OF NITROGEN AND ZINC LEVELS ON YIELD AND TECHNOLOGICAL CHARACTERS OF SOME PROMISING FLAX GENOTYPES

Ph.D. Thesis
In
Agric. Sci. (Agronomy)

By

RIHAM HAMED HASSAN AHMED

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Cairo Univ., 2004 M.Sc. Agric. Sci. (Agronomy), Fac. Agric., Cairo Univ., 2010

APPROVAL COMMITTEE

Dr. MOHAMED ALI MOHAMED RIZK Professor of Agronomy, Fac. Agric., AL- Azhar University
Dr. MAGDY MOHAMED SHAFIK
Professor of Agronomy, Fac. Agric., Cairo University
Dr. AMANY MOHAMED ABDALLAH MATBULLY
Professor of Agronomy, Fac. Agric., Cairo University
Dr. SOHAIR ELAYAN DESSOKY ELAYAN
Professor of Agronomy, Fac. Agric., Cairo University
Date: 29 / 11 / 2018

SUPERVISION SHEET

EFFECT OF NITROGEN AND ZINC LEVELS ON YIELD AND TECHNOLOGICAL CHARACTERS OF SOME PROMISING FLAX GENOTYPES

Ph.D. Thesis
In
Agric. Sci. (Agronomy)

By

RIHAM HAMED HASSAN AHMED

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Cairo Univ., 2004 M.Sc. Agric. Sci. (Agronomy), Fac. Agric., Cairo Univ., 2010

SUPERVISION COMMITTEE

Dr. SOHAIR ELAYAN DESSOKY ELAYAN Professor of Agronomy, Fac. Agric., Cairo University

Dr. AMANY MOHAMED ABDALLAH MATBULLY Professor of Agronomy, Fac. Agric., Cairo University

Dr. SABER HUSSIEN AHMED MOSTAFA Head Research, Fiber Crops Res., Field Crops Inst., Agric. Res. Center, Giza.

Name of Candidate: Riham Hamed Hassan Ahmed Degree: Ph.D. Title of

Thesis: Effect of Nitrogen and Zinc Levels on Yield and

Technological Characters of Some Promising Flax Genotypes.

Supervisors: Dr. Sohair Elayan Dessoky Elayan

Dr. Amany Mohamed Abdallah Matbully

Dr. Saber Hussien Ahmed Mostafa

Department: Agronomy **Approval:** 29 / 11 /2018

ABSTRACT

This study was carried out at Giza Agric. Res. Station. Field Crops Res. Instit., A.R.C. during two successive seasons (2014/2015 and 2015/2016) seasons to evaluate three flax genotypes (S.541-D/10, S.541-C/3, and S.651) released by Fiber crops Res. where grown under three zinc concentrations (Control, 150 and 300 ppm) and three nitrogen levels (30, 45 and 60 kg N/fed.) to study influence of nitrogen and zinc levels on yield and technological characters of some promising flax genotypes and determine the best treatment for higher yield and quality. Results showed significant differences among the three flax genotypes. Whereas, strain 541-D/10 surpassed the other genotypes in technical stem length, straw yield/plant as well as per feddan, fiber yield/feddan and fiber length in both seasons. While, strain 541-C/3 ranked first in seed yield/plant, seed index, seed yield/feddan, oil yield/feddan and oil percentage. And strain 651 surpassed other genotypes in number of seeds/capsule and total fiber percentage. While there weren't differences between Strain 541-D/10 and Strain 541-C/3 in plant height, and stem diameter in both seasons. The data indicated that, fertilizer with nitrogen and zinc significantly affected all characters under study. Use of (300 ppm) zinc concentration resulted a significant increase in plant height, technical stem length, stem diameter, straw yield/plant as well as per feddan, seed yield/plant as well as per feddan, fiber yield/feddan and oil yield/fed in both seasons. Data showed that highest level of nitrogen gave the highest averages of all characters under study except number of capsules / plant in both seasons. The flax strain 651 ranked first in fiber percentage per the total cross section followed by S. 541- D/10 and S. 541- C/3 when applying zinc 300 ppm and 60 kg N/fed. It is clear also that, added highest zinc and nitrogen quantities promote maximum estimates of fiber and xylem percentages in comparison with the lowest amounts of both elements studied. While, pith percentage decreased with added highest zinc and nitrogen.

Key words: Flax, *Linum usitatissimum* L., Nitrogen, Zinc, Straw, Fibers, Seed, Oil, Flax Anatomy

ACKNOWLEDGEMENT

I wish to express my sincere thanks, deepest gratitude and appreciation to **Dr. Sohair Elayan Dessoky Elayan** Professor of Agronomy, Faculty of Agriculture, Cairo University, **Dr. Amany Mohamed Abdallah** Professor of Agronomy, Faculty of Agriculture, Cairo University and **Dr. Saber Hussien Ahmed** Head Research, Fiber crops Research Section, Field Crops Research Institute, Agricultural Research Center Giza Egypt for suggesting the problem, supervision, continuous assistance and their guidance through the course of study and revision the manuscript of this thesis.

Special Thanks to **Dr. Gamal El Shimy** Head Research, Fiber crops Research Section, Field Crops Research Institute, Agricultural Research Center Giza and my family for valuable advice and continuous help during all phases of my life.

CONTENTS

INTRODUCTION	1
REVIEW OF LITERATURE	3
MATERIALS AND METHODS	32
RESULTS AND DISCUSSION	39
1. Straw yield and its components	39
a. Plant height	39
b. Technical stem length.	42
c. Stem diameter	44
d. Straw yield / plant	46
e. Straw yield / feddan	50
f. Fiber yield / feddan	52
2. Seed yield and its components	62
a. Number of capsules / plant	62
b. Number of seeds / capsule	64
c. Seed yield / plant	66
d. Seed index	71
e. Seed yield / feddan	72
f. Oil yield / feddan	81
3. Technological characters.	85
a. Fiber length	85
b. Total fiber percentage.	87
c. Oil percentage	91
4. Anatomical manifestation studies	95
a. Total cross section area mm ²	95
b. Cortex area mm ²	95
c. Fiber area mm ²	95
d. Xylem area mm ²	95
e. Pith area mm ²	95
f. Fiber index mm ³	95
g. Cortex area %	97
h. Fiber area %	97
i. Xylem area	97
j. Pith area %	97
SUMMARY REFERENCES	101
ARABIC SUMMARY	109

LIST OF TABLES

No	. Title	Page
1.	Pedigree and plant type of the three promising flax genotype	33
2.	Soil Physical and chemical analysis of the experimental sites in 2015 and 2016 seasons	33
3.	Main effect of genotypes, zinc concentrations and nitrogen levels on straw yield and its related characters in 2014/15 and 2015/16 seasons	
4.		
5.	(G x N) on straw yield and its related characters in 2014/15 and 2015/16 seasons	45
6.	Effect of interaction between zinc concentrations and nitrogen (Zn x N) levels on straw yield and its related characters in 2014/15 and 2015/16 seasons	
7.	Effect of interaction between genotypes, zinc concentrations and nitrogen levels (G x Zn x N) on straw yield and its related	
8.	characters in 2014/15 and 2015/16 seasons	
9.	2015/16 seasons	
10.	Effect of interaction between genotypes and nitrogen levels (G x N) on straw and fiber yield / feddan in 2014/15 and 2015/16 seasons.	
11.	Effect of interaction between zinc concentrations and nitrogen levels (Zn x N) on straw and fiber yield / feddan in 2014/15 and 2015/16 seasons.	
12.	Effect of interaction between genotypes, zinc concentrations and nitrogen levels (G x Zn x N) on straw and fiber yield / feddan in 2014/15 and 2015/16 seasons	
13.	Main effect of genotypes, zinc concentrations and nitrogen levels on seed yield and its related characters in 2014/15 and 2015/16 seasons	

LIST OF TABLES (Continued)

No	. Title	Page
14.	Effect of interaction between genotypes and zinc concentrations (G x Zn) on seed yield and its related	65
15.	characters in 2014/15 and 2015/16 seasons Effect of interaction between genotypes and nitrogen levels (G x N) on seed yield and its related characters in 2014/15	65
16.	and 2015/16 seasons	67
17.	2014/15 and 2015/16 seasons Effect of interaction between genotypes, zinc concentrations and nitrogen levels (G x Zn x N) on seed yield and its related	
18.	characters in 2014/15 and 2015/16 seasons	
19.	seasons Effect of interaction between genotypes and zinc concentrations (G x Zn) on seed and oil yield / feddan in	
20.	2014/15 and 2015/16 seasons Effect of interaction between genotypes and nitrogen levels (G x N) on seed and oil yield / feddan in 2014/15 and	74
21.	2015/16 seasons Effect of interaction between zinc concentrations and nitrogen	78
22.	levels (Zn x N) on seed and oil yield / feddan in 2014/15 and 2015/16 seasons	82
23.	and nitrogen levels (G x Zn x N) on seed and oil yield / feddan in 2014/15 and 2015/16 seasons	84
24.	levels on technological characters in 2014/15 and 2015/16 seasons	86
25.	concentration (G x Zn) on technological characters in 2014/15 and 2015/16 seasons	88
2 3.	(G x N) on technological characters in 2014/15 and 2015/16 seasons	90