

Ain Shams University Faculty of Engineering Department of Structural Engineering

Optimization of Site Selection for Concrete Batch Plants Using Analytical Hierarchy Process (AHP)

A THESIS

Submitted in Partial Fulfillment for the Requirements of the Degree of

MASTER OF SCIENCE IN CIVIL ENGINEERING (STRUCTURAL)

Submitted by

Eng. Hadeel Abdul Hameed Elba

Demonstrators of Construction Engineering – Port-Said University B.Sc. in Civil Engineering, Structural & Construction Management Engineering Dep.,2013

Faculty of Engineering, Port-Said University

Supervised by

Prof. Dr. Ibrahim Abdel Rashid Assoc. Prof. Ibrahim Mahmoud Mahdi

Professor Structural Engineering Department Faculty of Engineering Ain Shams University Associate Professor
Structural Engineering and Construction
Management Department
Faculty of Engineering and Technology,
Future University in Egypt

Faculty of Engineering
Ain Shams University
Cairo, 2018

Ain Shams University Faculty of Engineering Department of Structural Engineering

Name : Hadeel Abdul Hameed Aly Elba

Date: 15 / 11 / 2018

Thesis : Optimization of Site Selection for Concrete Batch Plants

Using Analytical Hierarchy Process (AHP)

Degree : Master of Science in Civil Engineering (Structural)

EXAMINERS COMMITTEE

Name and Affiliation	Signature
Prof. Dr. Hossam eldeen Hosny Mohamed Professor, Structural Engineering Department Faculty of Engineering Zagazig University	
Prof. Dr. Ali Sheriff Abdel Fayad Professor, Structural Engineering Department Faculty of Engineering Ain Shams University	
Prof. Dr. Ibrahim Abdel Rashid Professor, Structural Engineering Department Faculty of Engineering Ain Shams University	
Dr. Ibrahim Mahmoud Mahdi Associate Professor Structural Engineering and Construction Management Department Faculty of Engineering and Technology Future University in Egypt	

Ain Shams University Faculty of Engineering Department of Structural Engineering

Name : Hadeel Abdul Hameed Aly Elba

Thesis: Optimization of Site Selection for Concrete Batch Plants

Using Analytical Hierarchy Process (AHP)

Degree: Master of Science in Civil Engineering (Structural)

SUPERVISORS COMMITTEE

Name and Affiliation	Signature
Prof. Dr. Ibrahim Abdel Rashid Professor, Structural Engineering	
Pepartment Faculty of Engineering Ain Shams University	
Dr. Ibrahim Mahmoud Mahdi Associate Professor Structural Engineering and Construction Management Department Faculty of Engineering and Technology Future University in Egypt	

Date: 15 / 11 / 2018

Postgraduate Studies

Authorization stamp: The thesis is authorized at / / 2018

College Board approval

/ / 2018

University Board approval

/ / 2018

CURRICULUM VITAE

Name: Hadeel Abdul Hameed Elba

Date of Birth: 6, June, 1990

Place of Birth: Egypt

Nationality: Egyptian

University Degree: B.Sc. in Civil Engineering, Structural &

Construction Management Engineering Department,

Faculty of Engineering, Port-Said University, 2013.

Current Job: Demonstrators of construction engineering – port

said university

Signature: Hadeel Elba

Date: / / 2018

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of

Master of Science in Civil Engineering (Structural Eng.).

The work included in this thesis was carried out by the author in the

Structural Engineering Department, Faculty of Engineering, Ain Shams University,

Cairo, Egypt.

No part of this thesis has been submitted for a degree or qualification at any

other university or institution.

Name:

Hadeel Abdul Hameed Elba

Signature:

Hadeel Elba

Date:

/ / 2018

ACKNOWLEDGMENT

At the beginning, this thesis was developed by the grace of God who gave me the knowledge and wit to finish and established this thesis entitled Optimization of Site Selection for Concrete Batch Plants Using Analytical Hierarchy Process (AHP).

I would like to express my sincere gratitude to my advisor **Prof. Ibrahim Abdul-Rasheed Nossir** for the continuous support of my MSc. study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my M. Sc. study.

I also would like to express special thanks and respect to **Dr. Ibrahim Mahmoud Mahdi** who patiently taught me everything I need to know and for his help, guidance and encourage me to develop and complete the thesis in the best possible ways and give me important tips all the time.

The door to **Prof. Mahdi** office was always open whenever I ran into a trouble spot or had a question about my research or writing. He consistently allowed this paper to be my own work, but steered me in the right the direction whenever he thought I needed it.

And, I would like to express my appreciation and gratitude to the experts who helped me in this research by answering the questionnaires and for their valuable time.

Last, but not least, I would like to thank my family, my daughter and friends for their continuous support throughout this research.

I also would like to thank friends, for their support and encouragement during the preparation of this thesis.

DEDICATION

ESPECIALLY DEDICATED

To

Our Holy God

Who guide and never leave me in making this research

My Beloved Father's Soul Dr. Abdul Hameed Elba

Who was the first teacher and will remain a great source of inspiration, support and always encourage me to believe in myself.

My Wonderful Mother, Dr. Shadia El Massry

A strong, patient and gentle spirit who taught me to trust in Allah and believe in hard work and without her I will not be able to succeed in my work

My Dear Brothers Shady, Ali and their beloved families, My Beautiful Daughter, Leen

For giving me strength to overcome pressure while doing this thesis
To all of you who believed that I can finish the study despite of all the
struggles, depression, and stress I experienced in the making of this thesis, I
dedicate this work.

ABSTRACT

The selection of the Concrete Batch Plant (CBP) location is the most essential element for success of a project. Recently, most of the companies are fully dependent on the Ready Mix Concrete (RMC) in their projects. The need for (RMC) is increasing due to the quality and conformity to standards provided and its appropriateness to the construction conditions for any country. Due to its value and availability project managers prefer to rely on RMC in their projects construction. In addition to increasing the demand on RMC attracts and encourages investors to establish projects inside the country. The selection of optimum location for CBP is a very important decision due to the difficulties and problems may results in selecting in-proper location. This thesis presents the most important factors affecting on deciding the optimum location. These factors are identified through structured interviews with expert engineers who are working in RMC industry and high qualified workers in CBP using structured interviews and Delphi method. An integrated model for deciding the optimum batch plant location is developed using the analytic hierarchy process (AHP). The selection process is reassessed using another analytical techniques which is the analytic network process (ANP) to provide more flexibility and considering mutual impact which enhance the selection decision. The AHP tool was applied with the help of SuperDesision Software to select the optimum CBP location, for the two alternatives with respect to selected factors ranking and after completing all pairwise comparisons; Results show that (CBP location in region) is obtained 56%, alternative (CBP location outside region) is obtained 44%. Applying the ANP to select the optimum, showed that: (CBP location in region) is obtained 45%, alternative (CBP location outside region) is obtained 55%. Comparison of results of applying AHP and ANP are showing that there are significant differences between their outcomes in identifying the optimum CBP location. This is due to interdependencies, outer dependencies and feedbacks. In addition, the AHP model is using a unidirectional hierarchical relevance between decision elements to make a proper decision to select the optimum location for CBP, while the ANP allows for more mutual relations among decision elements and this is called "feedback".

Keywords: Location Selection, Concrete Batch Plant, Analytic Hierarchy Process,
Analytic Network Process, Optimum site selection, Ready Mix
Concrete.

CONTENTS

CONTENT	Page
CHAPTER (1) INTRODUCTION	1
1.1 OVERVIEW	1
1.2 THESIS PROBLEM STATEMENT	2
1.3 OBJECTIVES	3
1.4 THESIS IMPORTANCE	3
1.5 THESIS HYPOTHESIS THESIS METHODOLOGY	4
1.6 THESIS METHODOLOGY	4
CHAPTER (2) LITERATURE REVIEW	6
2.1 INTRODUCTION	6
2.2 READY MIX CONCRETE	6
2.3 MULTI-CRITERIA DECISION MAKING (MCDM)	7
2.4 ANALYTIC HIERARCHY PROCESS	8
2.5 ANALYTIC NETWORK PROCESS	12
CHAPTER (3) CRITERIA AFFECTING THE SELECTION OF	14
THE BEST LOCATION	
3.1 INTRODUCTION	14
3.2 OPTIMUM SITE SELECTION	14
3.3 IDENTIFYING FACTORS	15
3.4 THE SELECTION OF EXPERTS	18
3.5 DIVIDING THE FACTORS	19
3.6 THE ESTABLISHMENT OF THE QUESTIONNAIRE	21
3.7 DELPHI TECHNIQUES	26
3.7.1 DELPHI METHOD STEPS	26
3.7.2 DELPHI METHOD ADVANTAGES	26
3.7.3 DELPHI METHOD LIMITATIONS	27

3.7.4 THE REASON FOR USING THE DELPHI METHOD IN	27
THE QUESTIONNAIRE	
3.8 FINAL RESULTS AFTER TWO TRIALS FOR ALL SELECTED	28
FACTORS	
CHAPTER (4) ANALYTIC HIERARCHY PROCESS (AHP) AND	36
ANALYTIC NETWORK PROCESS (ANP)	
4.1 INTRODUCTION	36
4.2 MULTI-CRITERIA DECISION MAKING (MCDM)	36
4.2.1 MCDM STEPS	37
4.3 ANALYTIC HIERARCHY PROCESS (AHP)	37
4.3.1 AHP OVERVIEW	37
4.3.2 AHP DEFINITION	38
4.3.3 IMPORTANCE OF AHP	38
4.3.4 THE BENEFITS OF AHP TECHNIQUE ARE AS	39
FOLLOWS	
4.3.5 DECISION SITUATIONS TO WHICH THE AHP CAN BE	40
APPLIED INCLUDE	
4.3.6 AHP PRINCIPLES	40
4.3.7 METHODOLOGY OF AHP	40
4.3.8 AHP STEPS	42
4.3.8.1 STEP ONE: AHP BREAKDOWN STRUCTURE	42
4.3.8.2 STEP TWO: PAIRWISE COMPARISONS	43
4.3.8.3 CONSISTENCY EVALUATION	44
4.3.8.3.1 COMPUTE THE CONSISTENCY INDEX (CI)	44
4.3.8.3.2 COMPUTE THE CONSISTENCY RATIO (CR)	45
4.3.8.3.3 RANDOM INDEX (RI)	45
4.4 ANALYTIC NETWORK PROCESS (ANP)	46
4.4.1 ANP OVERVIEW	46

4.4.2 ANP DEFINITION	48
4.4.3 ANP IMPORTANCE	48
4.4.4 ANP: SETTING UP A MODEL	49
4.4.5 ANP PAIRWISE COMPARISONS	49
4.4.6 CONSISTENCY EVALUATION	51
4.4.6.1 COMPUTE THE CONSISTENCY INDEX (CI)	51
4.4.6.2 COMPUTE THE CONSISTENCY RATIO (CR)	51
4.4.6.3 RANDOM INDEX (RI)	52
4.4.7 SUPERMATRIX	52
4.4.8 WEIGHTED SUPERMATRIX	53
CHAPTER (5) CONSTRUCT A MODEL FOR SELECTING THE CBP OPTIMUM LOCATION USING AHP AND ANP	54
5.1 INTRODUCTION	54
5.2 FACTORS IDENTIFYING FROM THE CBP QUESTIONNAIRE	54
5.3 SUPERDECISION SOFTWARE OVERVIEW	56
5.4 AHP SOFTWARE MODELS	56
5.4.1 SUPERSESSION SOFTWARE STEPS TO CONSTRUCT A MODEL AHP	56
5.4.2 ILLUSTRATE THE AHP MODEL	57
5.4.3 THE SUPERMATRICES	62
5.5 ANP MODEL	62
5.5.1 SUPERDECISION SOFTWARE STEPS TO CONSTRUCT A MODEL ANP	63
5.5.2 THE DIFFERENCE OF INNER AND OUTER DEPENDENCE	63
5.5.3 ILLUSTRATE ANP MODEL	64
5.5.4 PAIRWISE COMPARISON OF ANP MODEL FOR THE SELECTION OF CBP LOCATION	64
5.5.5 THE SUPERMATRIX	66

5.6 RESULTS FROM SOFTWARE MODELS	70
5.7 INCONSISTENCY ANALYSIS FROM AHP/ANP ANALYSIS IF IT	74
CAN BE	
5.8 THE DIFFERENCE BETWEEN ANP AND AHP	74
5.8.1 ADVANTAGES AND DISADVANTAGES OF AHP/ANP	76
5.8.2 ASPECTS OF DIFFERENCES BETWEEN AHP AND ANP	77
CHAPTER (6) CONCLUSIONS AND RECOMMENDATION	79
6.1 INTRODUCTION	79
6.2 CONCLUSION	79
6.3 RECOMMENDATIONS	81

LIST OF FIGURES

<u>Figure</u>	Page
Figure (2.1): A Simple Hierarchical Model	11
Figure (2.2): Feedback Network	12
Figure (3.1): The Three Points Of Views Of The Factors Affecting On	10
Site Selection	19
Figure (3.2): A. Impact Of Egyptian Work Condition	22
Figure (3.3): B. Impact Of Work Region Condition	23
Figure (3.4): C. Impact Of Work Site Condition	23
Figure (3.5): Factors Affecting Selection CBP Location	24
Figure (3.6): Factors Affecting Selection Construction Site Location	25
Figure (4.1): AHP Methodology	41
Figure (4.2): The Process Diagram Of AHP	42
Figure (4.3): The Analytic Hierarchy Process Breakdown Structure	43
Figure (4.4): Feedback Network	46
Figure (4.5): The ANP Systems With Feedback	47
Figure (4.6): The ANP Network Model	47
Figure (4.7): The Supermatrix Of A Network	53
Figure (4.8): Detail Of A Matrix In The Supermatrix Of A Network	53
Figure (5.1): A Three - Level Hierarchical Best Site Selection	
Breakdown Structure For CBP Site Location	58
Figure (5.2): Snapshot Of The Questionnaire Mode For Comparisons	
With Respect To Goal	60
Figure (5.3): Snapshot Of The Result Of Factors Importance Weight	- 4
With Respect To Goal	61

Figure (5.4): Snapshot Of ANP Model For Best Site Selection	<i>c</i> 1
Breakdown Structure For CBP Site Location	64
Figure (5.5): Snapshot Of The Questionnaire Mode For Comparisons	66
With Respect To each alternative	66
Figure (5.6): Snapshot Of A Part Of The Unweighted Supermatrix For	68
The Optimum Selection Of CBP Location	08
Figure (5.7): Snapshot Of A Part Of The Weighted Supermatrix For The	68
Optimum Selection Of CBP Location	08
Figure (5.8): Snapshot Of A Part Of The Limit Supermatrix For The	69
Optimum Selection Of CBP Location	09
Figure (5.9): Snapshot Of The Priorities The Limit Supermatrix	70
Figure (5.10): Snapshot Of The Final Export Report Of AHP Model By	71
Using SUPERDECISION Software	/1
Figure (5.11): Snapshot Of The Final Export Report Of ANP Model By	72
Using SUPERDECISION Software	12
Figure (5.12): The Result For The Best CBP Location In AHP	73
Figure (5.13): The Result For The Best CBP Location In ANP	73
Figure (5.14): Snapshot For The Inconsistency Report From The	75
SUPERDECISION Software.	13

LIST OF TABLES

<u>Table</u>	<u>Page</u>
Table (3.1): The major selected factors affecting on the CBP site selection	17
Table (3.2): The Evaluation Scale for Questionnaire	19
Table (3.3): Snapshot of the questionnaire results after two trials of Delphi Technique	20
Table (3.4): The second and final trial after Delphi techniques applied for the factors	28
Table (4.1): The pairwise comparisons scale	44
Table (4.2): The average random index	45
Table (4.3): The comparison judgment scale	48
Table (4.4): The Average Random Index	50
Table (5.1): The most important 13 factors will be applied in AHP/ANP model	55
Table (5.2): The questionnaire mode for comparisons with respect to each criterion in matrix mode	62
Table (5.3): the major advantages and disadvantages of AHP/ANP	76
Table (5.4): The Advantages and Disadvantages of AHP / ANP	76