SOLID WASTE MANAGEMENT FOR INDUSTRIAL ZONES

Submitted By Hala Abduel Hamed Hassan Osman

B.Sc. of Engineering (Survey), Faculty of Engineering Shobra,
Zigzag University (Banaha Branch), 2004
Diploma in Environmental Sciences, Institute of Environmental Studies &
Research,
Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Engineering Sciences Institute of Environmental Studies and Research Ain Shams University

2018

SOLID WASTE MANAGEMENT FOR INDUSTRIAL ZONES

Submitted By Hala Abduel Hamed Hassan Osman

B.Sc. of Engineering (Survey), Faculty of Engineering Shobra,
Zigzag University (Banaha Branch), 2004
Diploma in Environmental Sciences, Institute of Environmental Studies &
Research,
Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In

Environmental Sciences
Department of Environmental Engineering Sciences

Under The Supervision of:

1-Prof. Dr. Mohamed El-Hosseiny Abd El-Rahman El-Nadi

Prof. of Sanitary & Environmental Engineering Faculty of Engineering Ain Shams University

2-Dr. Nany Ali Hassan Nasr

Associate Prof. of Sanitary & Environmental Engineering Faculty of Engineering
Ain Shams University

3-Dr. Nahla Mohamed

Lecturer of Chemistry, Department of Physics & Mathematics Faculty of Engineering Ain Shams University

2018

APPROVAL SHEET SOLID WASTE MANAGEMENT FOR INDUSTRIAL ZONES

Submitted By Hala Abduel Hamed Hassan Osman

B.Sc. of Engineering (Survey), Faculty of Engineering Shobra,
Zigzag University (Banaha Branch), 2004
Diploma in Environmental Sciences, Institute of Environmental Studies & Research,

Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Engineering Sciences
This thesis Towards a Master Degree in Environmental

Sciences

Has been

Approved by:

Name Signature

1-Prof. Dr. Mohamed El-Hosseiny Abd El-Rahman El-Nadi

Prof. of Sanitary & Environmental Engineering Faculty of Engineering - Ain Shams University

2-Prof. Dr. Mahmoud Mohamed Abd El Azeem

Prof. of Sanitary & Environmental Engineering Faculty of Engineering Ain Shams University

3-Prof. Dr. Ghada Mohamed Basuony

Prof. of Chemistry- Faculty of Engineering Ain Shams University

2018

ACKNOLEDGMENT

I want firstly to thank God for his graces and gifts.

I would like to express my deepest gratitude to my thesis advisor *Prof. Dr. Mohamed El- Husseny Abdel Rahman* for his consistent guidance, precious suggestions, and constant encouragement throughout the study. I would not have achieved this far and this thesis would not have been completed without all the support that I have always received from him.

My special thanks goes to all the Professors and doctors at the Environmental Engineering Sciences Department at Institute of Environmental Studies and Research, Ain Shams University that supported me to complete my master degree.

Finally, I Would Like To Express My Deepest Thankfulness To My Family, My Husband *Sameh Abdelfatah*, My Daughters, *Dima*, *Dana* And **Dania**, My Parents, My Friends, For All Their Love And Support Throughout My Life, And Encouragement During The Period Of This Thesis.

Abstract

Solid Waste Management is one of most important pillars for achieving sustainability, along with wastewater and energy management. Solid waste management is a major issue not only at nation and government levels but also at any facility level. One of the important facilities to consider is the industrial zones.

As most of the industrial zones in Egypt, Quweisna industrial zone is one of the important industrial zone as it contents important industries such as, engineering, ceramic, textiles, food, chemical and pharmaceutical industries. A detailed study about Quweisna industrial zone's waste generation, composition and characteristics, existing good and bad practices was conducted. The objective of the study was to provide a baseline data related to solid waste in the zone and also to suggest 4Rs strategy (A number of waste prevention techniques: Reduction, Reuse, Recycle and Recovery, and they are commonly summarized as 4Rs) for achieving a clean and green industrial zone.

Quweisna Industrial Zone generates every year 170.446 ton, almost 138.15 ton of the total wastes that reaches the final stage of disposal, and only 32.39 ton are recovered, which mean that nearly 81% of the total waste generated in industrial zone is sent-off for disposal to local municipality.

At the end, acceptable practices of waste management have been attempted (and some still in continuation) in Quweisna Industrial Zone, however, discontinuation and lack of participation from the zone administration is in concern. The waste audit (composition, characteristics) results show a great scope for many waste recovery and recycling opportunities in Quweisna Industrial Zone, to transform into a Green industrial zone.

Quweisna Industrial Zone has, to some extent, improved its solid waste management. With the right solid waste management and good sustainability plan action, Quweisna Industrial Zone will become a Green zone. However, there needs for planning, policies and participation from the Industrial Zone administration and the companies' owners towards attaining a sustainable solid waste management.

List of Contents

Title	
Abstract	i
List of content	iii
List of Abbreviation	X
List of tables	xi
List of figures	xiii
CHAPTER ONE: INTRODUCTION	1
1.1. Background	2
1.2. Study Objective	4
1.3. Scope of Work	4
1.4. Thesis Organization	5
CHAPTER TWO: LITERATURE REVIEW	7
2.1. Introduction	8
2.2. Industrial Solid Waste	10
2.2.1. Classification of Industrial Solid Waste	11
2.2.2. Types of Industrial Solid Wastes	14
2.3. Industrial Solid Waste Handling	15

Title	Page
2.3.1. Functional Elements of a Solid Waste Management System	16
2.4. World Experience	27
2.5. Egyptian Experience	
2.5.1. Industrial Establishments	28
2.5.2. Industrial Solid Waste Amount	30
2.5.3. Implementation of Industrial Pollution Control Policies	31
2.5.4. Industrial Zones Exist in Egypt	36
2.5.5. Generation of Industrial Waste	38
2.5.6. The Applied Solid Waste Management for Industrial Zones	38
2.5.7. Legal Provisions for Industrial Zones	39
2.5.8. EEAA Guidelines for Planning Industrial Zones	40
CHAPTER THREE: MATERIALS AND METHODS	41
3.1. Study Location	42
3.1.1. The First Stage	42

Title	
3.1.2. The Second Stage	
3.1.3. The Third Stage	
3.1.4. The Fourth Stage	43
3.2. Pilot Description (Lab Scale Experiment Description)	
3.2.1. Food Industry Waste	47
3.2.2. Engineering Industry Waste	
3.2.3. Carton Industry Waste	
3.2.4. Plastic Industry Waste	
3.2.5. Ceramic Industry Waste	
3.2.6. Leather Industry Waste	
3.2.7. Chemical Industry Waste	
3.3. Data Collection (Sampling)	
3.3.1. Experimental Sample of the Study	
3.4. Measurement Analysis	50
3.4.1. Industrial Solid Waste of the Food Industry	
3.4.3. Industrial Solid Waste of the Carton	53

Title	Page
Industries	
3.4.2. Industrial Solid Waste of the Engineering Industry	55
3.4.4. Industrial Solid Waste of the Plastic Industries	
3.4.5. Industrial Solid Waste of the Ceramic Industry	59
3.4.6. Industrial Solid Waste of the Leather Industry	61
3.4.7. Industrial Solid Waste of the Chemicals Industry	
CHAPTER FOUR: FIELD RESULTS	66
4.1. Results of the Field Study	67
4.2. The Composition of Industrial Solid Waste in Quweisna Industrial Zone	
4.2.1. Food Industry Waste	
4.2.2. Engineering Industry Waste	83
4.2.3. Carton Industry Waste	83
4.2.4. Plastic Industry Waste	
4.2.5. Ceramic Industry Waste	84

Title	
4.2.6. Leather Industry Waste	84
4.2.7. Chemical Industry Waste	85
4.3. Existing Solid Waste Management System in Quweisna Industrial Zone	86
4.3.1. Collection Practices	87
4.3.2. Transportation Practices	86
4.3.3. Disposal Practices	86
CHAPTER FIVE: DISCUSSION	
5.1. Field Results Discussion	89
5.1.1. Solid Waste Amount and Variation	91
5.1.1.1. Solid Waste of the Food Industry	91
5.1.1.2. Solid Waste of the Engineering Industry	92
5.1.1.3. Solid Waste of the Carton Industry	93
5.1.1.4. Solid Waste of the Plastic Industry	94
5.1.1.5. Solid Waste of the Ceramic Industry	95
5.1.1.6. Solid Waste of the Leather Industry	96
5.1.1.7. Solid Waste of the Chemical Industry	97

Title	Page
5.1.2. Solid Waste Management Practices Discussion	98
5.1.2.1. Waste Generations Practices	98
5.1.2.2. Waste Storage Practices	98
5.1.2.3. Waste Collection Practices	99
5.1.2.4. Waste Transfer and Transport	100
5.1.2.5. Waste Recycling and Recovery	
5.1.2.6. Waste Disposal Practices	101
5.2. Results Verifications	101
5.2.1. Solid Waste Composition Verification	
5.3. Discussion of Results and Its Use	
5.3.1. Performance of The Solid Waste Management System	
5.3.2. Scenarios For Solutions	108
5.3.2.1. At Each Factory Level	108
5.3.2.2.Between the factories inside the Industrial Zone level	
5.3.2.3.At Industrial Zone Level	109

Title	Page
CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS	110
6.1. Conclusions	111
6.2. Recommendations and Further Work	113
REFERENCES	
APPENDICES	119
SUMMARY	125

List of Abbreviation

Symbol	Description
SW	Solid Waste
SWM	Solid Waste Management
SWMS	Solid Waste Management System
SSWM	Sustainable Solid Waste Management
MSW	Municipal Solid Waste
3Rs	Reuse, Reduce and Recycle
4Rs	Reuse, Reduce, Recycle and Recovery
MRFs	Material Recovery Facilities
EEAA	Egyptian Environmental Affairs Agency
GDP	Gross Domestic Product
MSEA	Ministry of State for Environmental Affairs
RBO's	Regional Branch Office's
EIA	Environmental Impact Assessment
EPAP	Egyptian Pollution Abatement Project
GIS	Geographic Information System
GHG	Green House Gases

LIST OF TABLES

Table	
2.1. Interrelationship of functional elements comprising SWMS.	14
2.2. Number of Registered Establishments in Manufacturing Industries in Egypt in 2007.	29
3.1. The quantity and installation of industrial solid waste in Quweisna Industrial Zone in 2016.	49
3.2. Classification of Solid waste from the food industry in Quweisna Industrial Zone (2016).	52
3.3. Classification of Solid Waste from the Engineering Industry in the Quweisna Industrial Zone in 2016.	54
3.4. Classification of Solid Waste the Carton Industries in the Quweisna Industrial Zone in 2016.	56
3.5. Classification of Solid Waste from the Plastic Industries in the Quweisna Industrial Zone in 2016.	58
3.6. Classification of Solid Waste from the Ceramic Industries in the Quweisna Industrial Zone in 2016.	60
3.7. Classification of Solid Waste from the Leather Industries in the Quweisna Industrial Zone in 2016.	62
3.8. Classification of Solid Waste from the Chemicals Industries in the Quweisna Industrial Zone in 2016.	64